Enzymes
UniProtKB help_outline | 8 proteins |
Reaction participants Show >> << Hide
- Name help_outline a (3R)-3-hydroxyacyl-CoA Identifier CHEBI:57319 Charge -4 Formula C24H35N7O18P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@H](O)[*] 2D coordinates Mol file for the small molecule Search links Involved in 128 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 3-oxoacyl-CoA Identifier CHEBI:90726 Charge -4 Formula C24H33N7O18P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)CC(=O)*)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32711 | RHEA:32712 | RHEA:32713 | RHEA:32714 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.
Haataja T.J., Koski M.K., Hiltunen J.K., Glumoff T.
All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene ... >> More
All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2. << Less
-
Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins.
Dieuaide-Noubhani M., Novikov D., Baumgart E., Vanhooren J.C.T., Fransen M., Goethals M., Vandekerckhove J., Van Veldhoven P.P., Mannaerts G.P.
Recently, we purified five 3-hydroxyacyl-CoA dehydrogenases from isolated rat liver peroxisomal fractions. The enzymes were designated I-V according to their order of elution from the first column used in the purification procedure. Determination of the substrate (L- or D-hydroxyacyl-CoA) stereo-s ... >> More
Recently, we purified five 3-hydroxyacyl-CoA dehydrogenases from isolated rat liver peroxisomal fractions. The enzymes were designated I-V according to their order of elution from the first column used in the purification procedure. Determination of the substrate (L- or D-hydroxyacyl-CoA) stereo-specificity and (de)hydratase measurements with the different 3-hydroxyacyl-CoA stereoisomers of straight-chain fatty acids and the bile acid intermediate trihydroxycoprostanic acid, immunoblotting analysis with antibodies raised against the different enzymes and peptide sequencing, all performed on enzymes I-V and molecular cloning of enzyme III revealed the following picture. Rat liver peroxisomes contain two multifunctional beta-oxidation proteins: (a) multifunctional protein 1 (the classical multifunctional protein; MFP-1) displaying 2-enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase and delta 3, delta 2-enoyl-CoA isomerase activity (enzyme IV) and (b) multifunctional protein 2 (MFP-2) displaying 2-enoyl-CoA hydratase and D-3-hydroxyacyl-CoA dehydrogenase activity (enzyme III). Because of their substrate stereospecificity and because of the stereochemical configuration of the naturally occurring beta-oxidation intermediates, MFP-1 and MFP-2 appear to be involved in the beta-oxidation of fatty acids and bile acids intermediates, respectively. The deduced amino acid sequence of the cloned MFP-2 cDNA is highly similar to that of the recently described porcine endometrial estradiol 17 beta-dehydrogenase [Leenders, F., Adamski, J., Husen, B., Thole, H. H. & Jungblut, P. W. (1994) Eur. J. Biochem. 222, 221-227]. In agreement, MFP-2 also displayed estradiol 17 beta-dehydrogenase activity, indicating that MFP-2 and the steroid dehydrogenase are identical enzymes. MFP-2 is partially cleaved, most probably in vivo, in a estradiol 17 beta-dehydrogenase/D-3-hydroxyacyl-CoA dehydrogenase that forms a dimeric complex (enzyme I) and a hydratase. The physiological significance of enzyme I in bile acid synthesis (and steroid metabolism) remains to be determined. MFP-1 (enzyme IV) is artefactually cleaved during purification giving rise to 3-hydroxyacyl-CoA dehydrogenase V. 3-Hydroxyacyl-CoA dehydrogenase II is a mitochondrial contaminant similar to porcine and murine mitochondrial 3-hydroxyacyl-CoA dehydrogenase. << Less
Eur. J. Biochem. 240:660-666(1996) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein.
Jiang L.L., Miyazawa S., Souri M., Hashimoto T.
When D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein was purified from human liver, two preparations were obtained. One contained a 77-kDa polypeptides as the main and minor smaller polypeptides including a 46-kDa polypeptide, and this preparation showed both ... >> More
When D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein was purified from human liver, two preparations were obtained. One contained a 77-kDa polypeptides as the main and minor smaller polypeptides including a 46-kDa polypeptide, and this preparation showed both the dehydratase and dehydrogenase activities. The other preparation was a homodimer of the 46-kDa polypeptide and showed only the dehydratase activity. Further analysis indicated that the native enzyme is a homodimer of 77-kDa polypeptide, which was proteolytically modified during purification. The cDNA for the human 77-kDa polypeptide was cloned. The amino acid sequences of the peptides derived from the components of the enzyme preparations were located in the deduced amino acid sequence of the cDNA. The preparation containing the 77-kDa polypeptide was treated with a protease, and two monofunctional fragments were separated. The dehydrogenase and dehydratase fragments were located on the amino- and carboxyl-terminal sides, respectively, of the deduced amino acid sequence of the cDNA. The protein expressed by the cDNA with the entire coding region exhibited both the dehydratase and dehydrogenase activities, and that expressed by a truncated version covering the carboxyl-terminal side exhibited only the dehydratase activity. The cloned cDNA was identical to the human 17 beta-hydroxysteroid dehydrogenase IV cDNA. << Less
J. Biochem. 121:364-369(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.