Reaction participants Show >> << Hide
- Name help_outline (Z)-5-oxohex-2-enedioate Identifier CHEBI:16967 Charge -2 Formula C6H4O5 InChIKeyhelp_outline OOEDHTCVMHDXRH-IWQZZHSRSA-L SMILEShelp_outline [O-]C(=O)\C=C/CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E,4Z)-2-hydroxyhexa-2,4-dienedioate Identifier CHEBI:64016 Charge -2 Formula C6H4O5 InChIKeyhelp_outline JBEBGTMCZIGUTK-HSFFGMMNSA-L SMILEShelp_outline O\C(=C\C=C/C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32211 | RHEA:32212 | RHEA:32213 | RHEA:32214 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Uncovering the protocatechuate 2,3-cleavage pathway genes.
Kasai D., Fujinami T., Abe T., Mase K., Katayama Y., Fukuda M., Masai E.
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In ... >> More
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of cell extracts of Escherichia coli carrying praI, praA, praH, praB, praC, and praD, these genes were found to code for 4HB 3-hydroxylase, PCA 2,3-dioxygenase, 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, 2-hydroxymuconate-6-semialdehyde dehydrogenase, 4-oxalocrotonate (OCA) tautomerase, and OCA decarboxylase, respectively, which are involved in the conversion of 4HB into 2-hydroxypenta-2,4-dienoate (HPD). The praE, praF, and praG gene products exhibited 45 to 61% amino acid sequence identity to the corresponding enzymes responsible for the catabolism of HPD to pyruvate and acetyl coenzyme A. The deduced amino acid sequence of praR showed similarity with those of IclR-type transcriptional regulators. Reverse transcription-PCR analysis revealed that praABEGFDCHI constitute an operon, and these genes were expressed during the growth of JJ-1b on 4HB and PCA. praR-praABEGFDCHI conferred the ability to grow on 4HB to E. coli, suggesting that praEGF were functional for the conversion of HPD to pyruvate and acetyl coenzyme A. A promoter analysis suggested that praR encodes a repressor of the pra operon. << Less
J. Bacteriol. 191:6758-6768(2009) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
4-oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer.
Chen L.H., Kenyon G.L., Curtin F., Harayama S., Bembenek M.E., Hajipour G., Whitman C.P.
The xylH gene encoding 4-oxalocrotonate tautomerase (4-OT) has been located on a subclone of the Pseudomonas putida mt-2 TOL plasmid pWW0 and inserted into an Escherichia coli expression vector. Several of the genes of the metafission pathway encoded by pWW0 have been cloned in E. coli, but the ov ... >> More
The xylH gene encoding 4-oxalocrotonate tautomerase (4-OT) has been located on a subclone of the Pseudomonas putida mt-2 TOL plasmid pWW0 and inserted into an Escherichia coli expression vector. Several of the genes of the metafission pathway encoded by pWW0 have been cloned in E. coli, but the overexpression of their gene products has met with limited success. By utilizing the E. coli alkaline phosphatase promoter (phoA) coupled with the proper positioning of a ribosome-binding region, we are able to express functional 4-OT in yields of at least 10 mg of pure enzyme/liter of culture. 4-OT has been previously characterized and shown to be an extremely efficient catalyst (Whitman, C. P., Aird, B. A., Gillespie, W. R., and Stolowich, N. J. (1991) J. Am. Chem. Soc. 113, 3154-3162). Kinetic and physical characterization of the E. coli-expressed protein show that it is identical with that of the 4-OT isolated from P. putida. The functional unit is apparently a pentamer of identical subunits, each consisting of only 62 amino acid residues. This is the smallest enzyme subunit reported to date. The amino acid sequence, determined in part from automated Edman degradation and also deduced from the primary sequence of xylH, did not show homology with any of the sequences in the current data bases nor with any of the sequences of enzymes that catalyze similar reactions. We propose that the active site of 4-OT may be established by an overlap of subunits and comprised of amino acid residues belonging to several, if not all, of the subunits. << Less
J. Biol. Chem. 267:17716-17721(1992) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.