Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline citrate Identifier CHEBI:16947 (Beilstein: 1884707; CAS: 126-44-3) help_outline Charge -3 Formula C6H5O7 InChIKeyhelp_outline KRKNYBCHXYNGOX-UHFFFAOYSA-K SMILEShelp_outline OC(CC([O-])=O)(CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N6-acetyl-N6-hydroxy-L-lysine Identifier CHEBI:58122 Charge 0 Formula C8H16N2O4 InChIKeyhelp_outline YXKGOSZASIKYPU-ZETCQYMHSA-N SMILEShelp_outline CC(=O)N(O)CCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N2-citryl-N6-acetyl-N6-hydroxy-L-lysine Identifier CHEBI:63796 Charge -3 Formula C14H19N2O10 InChIKeyhelp_outline HPOPJZNNZCIWFX-CUVJYRNJSA-K SMILEShelp_outline CC(=O)N(O)CCCC[C@H](NC(=O)CC(O)(CC([O-])=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:32163 | RHEA:32164 | RHEA:32165 | RHEA:32166 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases.
Challis G.L.
Chembiochem 6:601-611(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli.
de Lorenzo V., Neilands J.B.
A cloned 8.3-kilobase-pair DNA fragment carrying all the genes (iucABCD iutA) of the aerobactin iron transport system of plasmid pColV-K30 was subjected to in vitro mutagenesis to afford mutant genes iucA, iucC, and iucA iucC. Complementation analyses and identification of aerobactin precursors ac ... >> More
A cloned 8.3-kilobase-pair DNA fragment carrying all the genes (iucABCD iutA) of the aerobactin iron transport system of plasmid pColV-K30 was subjected to in vitro mutagenesis to afford mutant genes iucA, iucC, and iucA iucC. Complementation analyses and identification of aerobactin precursors accumulated by Escherichia coli cells harboring the different constructions allowed assignment of the iucA and iucC genes to discrete steps in biosynthesis of the siderophore from N epsilon-acetyl-N epsilon-hydroxylysine and citrate. Plasmid pVLN10, a derivative carrying a DNA fragment complementing an iucC mutation, expressed in a minicell system a single 62,000-dalton protein as the product of this gene. << Less
J. Bacteriol. 167:350-355(1986) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification and characterization of two contiguous operons required for aerobactin transport and biosynthesis in Vibrio mimicus.
Moon Y.H., Tanabe T., Funahashi T., Shiuchi K., Nakao H., Yamamoto S.
In response to iron deprivation, Vibrio mimicus produces aerobactin as a major siderophore. Application of the Fur titration assay to a V. mimicus genomic DNA library followed by further cloning of the surrounding regions led to the identification of two adjacent, iron-regulated operons. One conta ... >> More
In response to iron deprivation, Vibrio mimicus produces aerobactin as a major siderophore. Application of the Fur titration assay to a V. mimicus genomic DNA library followed by further cloning of the surrounding regions led to the identification of two adjacent, iron-regulated operons. One contains three genes encoding homologs of the Escherichia coli FhuCDB and the other, five genes encoding homologs of the E. coli IucABCD IutA. Construction of the V. mimicus polar disruptants in the respective operons allowed us to confirm their functions. The genetic arrangement of the aerobactin-mediated iron acquisition system in V. mimicus is unique in that the aerobactin operon (iucABCD iutA ) is contiguous to the operon (matCDB ) encoding components of an ATP-binding cassette transport system for ferric aerobactin. This is the first report demonstrating that aerobactin transport and biosynthesis genes are present in a species outside the family Enterobacteriaceae. << Less
Microbiol. Immunol. 48:389-398(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis.
Oves-Costales D., Kadi N., Challis G.L.
Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence sid ... >> More
Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence siderophore biosynthesis is an attractive target for chemotherapeutic intervention. Two main pathways for siderophore biosynthesis exist in microbes. One pathway involves nonribosomal peptide synthetase (NRPS) multienzymes while the other is NRPS-independent. The enzymology of NRPS-mediated siderophore biosynthesis has been extensively studied for more than a decade. In contrast, the enzymology of NRPS-independent siderophore (NIS) biosynthesis was overlooked for almost thirty years since the first genetic characterisation of the NIS biosynthetic pathway to aerobactin. However, the past three years have witnessed an explosion of interest in the enzymology of NIS synthetases, the key enzymes in the assembly of siderophores via the NIS pathway. The biochemical characterisation of ten purified recombinant synthetases has been reported since 2007, along with the first structural characterisation of a synthetase by X-ray crystallography in 2009. In this feature article we summarise the recent progress that has been made in understanding the long-overlooked enzymology of NRPS-independent siderophore biosynthesis, highlight important remaining questions, and suggest likely directions for future research. << Less
Chem Commun (Camb) 2009:6530-6541(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12.
de Lorenzo V., Bindereif A., Paw B.H., Neilands J.B.
The iron-regulated aerobactin operon, about 8 kilobase pairs in size, of the Escherichia coli plasmid ColV-K30 was shown by deletion and subcloning analyses to consist of at least five genes for synthesis (iuc, iron uptake chelate) and transport (iut, iron uptake transport) of the siderophore. The ... >> More
The iron-regulated aerobactin operon, about 8 kilobase pairs in size, of the Escherichia coli plasmid ColV-K30 was shown by deletion and subcloning analyses to consist of at least five genes for synthesis (iuc, iron uptake chelate) and transport (iut, iron uptake transport) of the siderophore. The gene order iucABCD iutA was established. The genes were mapped within restriction nuclease fragments of a cloned 16.3-kilobase-pair HindIII fragment. Stepwise deletion and subsequent minicell analysis of the resulting plasmids allowed assignment of four of the five genes to polypeptides of molecular masses 63,000, 33,000 53,000, and 74,000 daltons, respectively. The 74-kilodalton protein, the product of gene iutA, is the outer membrane receptor for ferric aerobactin, whereas the remaining three proteins are involved in biosynthesis of aerobactin. The 33-kilodalton protein, the product of gene iucB, was identified as N epsilon-hydroxylysine:acetyl coenzyme A N epsilon-transacetylase (acetylase) by comparison of enzyme activity in extracts from various deletion mutants. The 53-kilodalton protein, the product of gene iucD, is required for oxygenation of lysine. The 63-kilodalton protein, the product of gene iucA, is assigned to the first step of the aerobactin synthetase reaction. The product of gene iucC, so far unidentified, performs the second and final step in this reaction. This is based on the chemical characterization of two precursor hydroxamic acids (N epsilon-acetyl-N epsilon-hydroxylysine and N alpha-citryl-N epsilon-acetyl-N epsilon-hydroxylysine) isolated from a strain carrying a 0.3-kilobase-pair deletion in the iucC gene. The results support the existence of a biosynthetic pathway in which aerobactin arises by oxygenation of lysine, acetylation of the N epsilon-hydroxy function, and condensation of 2 mol of the resulting aminohydroxamic acid with citric acid. << Less
J. Bacteriol. 165:570-578(1986) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.