Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 177 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline bicyclogermacrene Identifier CHEBI:63709 Charge 0 Formula C15H24 InChIKeyhelp_outline VPDZRSSKICPUEY-JEPMYXAXSA-N SMILEShelp_outline C\C1=C/CC\C(C)=C\[C@H]2[C@@H](CC1)C2(C)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31999 | RHEA:32000 | RHEA:32001 | RHEA:32002 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis.
Crocoll C., Asbach J., Novak J., Gershenzon J., Degenhardt J.
The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and characterized sev ... >> More
The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and characterized seven terpene synthases, key enzymes of terpene biosynthesis, from two cultivars of O. vulgare. Heterologous expression of these enzymes showed that each forms multiple mono- or sesquiterpene products and together they are responsible for the direct production of almost all terpenes found in O. vulgare essential oil. The correlation of essential oil composition with relative and absolute terpene synthase transcript concentrations in different lines of O. vulgare demonstrated that monoterpene synthase activity is predominantly regulated on the level of transcription and that the phenolic monoterpene alcohol thymol is derived from gamma-terpinene, a product of a single monoterpene synthase. The combination of heterologously-expressed terpene synthases for in vitro assays resulted in blends of mono- and sesquiterpene products that strongly resemble those found in vivo, indicating that terpene synthase expression levels directly control the composition of the essential oil. These results will facilitate metabolic engineering and directed breeding of O. vulgare cultivars with higher quantity of essential oil and improved oil composition. << Less
Plant Mol. Biol. 73:587-603(2010) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Molecular cloning and characterization of (+)-epi-alpha-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis.
Attia M., Kim S.U., Ro D.K.
Hernandulcin, a C15 sesquiterpene ketone, is a natural sweetener isolated from the leaves of Lippia dulcis. It is a promising sugar substitute due to its safety and low caloric potential. However, the biosynthesis of hernandulcin in L. dulcis remains unknown. The first biochemical step of hernandu ... >> More
Hernandulcin, a C15 sesquiterpene ketone, is a natural sweetener isolated from the leaves of Lippia dulcis. It is a promising sugar substitute due to its safety and low caloric potential. However, the biosynthesis of hernandulcin in L. dulcis remains unknown. The first biochemical step of hernandulcin is the synthesis of (+)-epi-α-bisabolol from farnesyl diphosphate, which is presumed to be catalyzed by a unique sesquiterpene synthase in L. dulcis. In order to decipher hernandulcin biosynthesis, deep transcript sequencings (454 and Illumina) were performed, which facilitated the molecular cloning of five new sesquiterpene synthase cDNAs from L. dulcis. In vivo activity evaluation of these cDNAs in yeast identified them as the sesquiterpene synthases for α-copaene/δ-cadinene, bicyclogermacrene, β-caryophyllene, trans-α-bergamotene, and α-bisabolol. The engineered yeast could synthesize a significant amount (~0.3 mg per mL) of α-bisabolol in shake-flask cultivation. This efficient in vivo production was congruent with the competent kinetic properties of recombinant α-bisabolol synthase (K(m) 4.8 μM and k(cat) 0.04 s(-1)). Detailed chemical analyses of the biosynthesized α-bisabolol confirmed its configuration to be (+)-epi-α-bisabolol, the core skeleton of hernandulcin. These results demonstrated that enzymatic, stereoselective synthesis of (+)-epi-α-bisabolol can be achieved, promising the heterologous production of a natural sweetener, hernandulcin. << Less
Arch. Biochem. Biophys. 527:37-44(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.