Reaction participants Show >> << Hide
- Name help_outline β-D-fructose 1,6-bisphosphate Identifier CHEBI:32966 (Beilstein: 7104287) help_outline Charge -4 Formula C6H10O12P2 InChIKeyhelp_outline RNBGYGVWRKECFJ-ARQDHWQXSA-J SMILEShelp_outline O[C@H]1[C@H](O)[C@@](O)(COP([O-])([O-])=O)O[C@@H]1COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methylglyoxal Identifier CHEBI:17158 (CAS: 78-98-8) help_outline Charge 0 Formula C3H4O2 InChIKeyhelp_outline AIJULSRZWUXGPQ-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate Identifier CHEBI:58861 Charge -2 Formula C6H9O8P InChIKeyhelp_outline XBUYIELOLLPBOC-PHDIDXHHSA-L SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glyceraldehyde 3-phosphate Identifier CHEBI:59776 (Beilstein: 6139851) help_outline Charge -2 Formula C3H5O6P InChIKeyhelp_outline LXJXRIRHZLFYRP-VKHMYHEASA-L SMILEShelp_outline [H]C(=O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31911 | RHEA:31912 | RHEA:31913 | RHEA:31914 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii.
White R.H., Xu H.
A biosynthetic pathway is proposed for creating 6-deoxy-5-ketofructose-1-phosphate (DKFP), a precursor sugar for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. First, two possible routes were investigated to determine if a modified, established biosynthetic pathway could be res ... >> More
A biosynthetic pathway is proposed for creating 6-deoxy-5-ketofructose-1-phosphate (DKFP), a precursor sugar for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. First, two possible routes were investigated to determine if a modified, established biosynthetic pathway could be responsible for generating 6-deoxyhexoses in M. jannaschii. Both the nucleoside diphosphate mannose pathway and a pathway involving nucleoside diphosphate derivatives of fructose-1-P, fructose-2-P, or fructose-1,6-bisP were tested and eliminated. The established pathways did not produce the expected intermediates nor did the anticipated enzymes have the predicted enzymatic activities. Because neither anticipated pathway could produce DKFP, M. jannaschii glucose-6-P metabolism was studied in detail to establish exactly how glucose-6-P is converted into DKFP. This detailed analysis showed that methylglyoxal and a fructose-1-P- or fructose-1,6-bisP-derived dihydroxyacetone-P fragment are key intermediates in DKFP production. Glucose-6-P readily converts to fructose-6-P, which in turn converts to fructose-1,6-bisP. Fructose-6-P and fructose-1,6-bisP convert into glyceraldehyde-3-P (Ga-P-3), which converts into methylglyoxal by a 2,3-elimination of phosphate. The MJ1585-derived enzyme catalyzes the condensation of methylglyoxal with a dihydroxyacetone-P fragment, which is derived from fructose-1-P and/or fructose-1,6-bisP, generating DKFP. The elimination of phosphate from Ga-P-3 proceeds by both enzymatic and chemical routes in cell extracts, producing sufficient concentrations of methylglyoxal to support the reaction. This work is the first report of methylglyoxal functioning in central metabolism. << Less
Biochemistry 45:12366-12379(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity.
Samland A.K., Wang M., Sprenger G.A.
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His(6) from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V(max) of 33 mU mg(-1 ... >> More
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His(6) from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V(max) of 33 mU mg(-1) and a K(m) of 430 microM at 50 degrees C. MJ0400-His(6) is inhibited competitively by erythrose-4-phosphate with a K(i) of 380 microM and displays heat stability with a half-life of c. 1 h at 100 degrees C. Hence, MJ0400 is the second gene encoding for an FBP aldolase in M. jannaschii. Previously, MJ0400 was shown to act as an 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase. This indicates that MJ0400 is involved in both the carbon metabolism and the shikimate pathway in M. jannaschii. << Less
FEMS Microbiol. Lett. 281:36-41(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.