Reaction participants Show >> << Hide
- Name help_outline 8-oxo-dGTP Identifier CHEBI:77896 Charge -4 Formula C10H12N5O14P3 InChIKeyhelp_outline BUZOGVVQWCXXDP-VPENINKCSA-J SMILEShelp_outline Nc1nc2n([C@H]3C[C@H](O)[C@@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)O3)c(=O)[nH]c2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 8-oxo-dGMP Identifier CHEBI:63224 Charge -2 Formula C10H12N5O8P InChIKeyhelp_outline AQIVLFLYHYFRKU-VPENINKCSA-L SMILEShelp_outline Nc1nc2n([C@H]3C[C@H](O)[C@@H](COP([O-])([O-])=O)O3)c(=O)[nH]c2c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31575 | RHEA:31576 | RHEA:31577 | RHEA:31578 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools.
Ito R., Hayakawa H., Sekiguchi M., Ishibashi T.
8-OxoGua (8-oxo-7,8-dihydroguanine) is produced in nucleic acids as well as in nucleotide pools of cells, by reactive oxygen species normally formed during cellular metabolic processes. MutT protein of Escherichia coli specifically degrades 8-oxoGua-containing deoxyribo- and ribonucleoside triphos ... >> More
8-OxoGua (8-oxo-7,8-dihydroguanine) is produced in nucleic acids as well as in nucleotide pools of cells, by reactive oxygen species normally formed during cellular metabolic processes. MutT protein of Escherichia coli specifically degrades 8-oxoGua-containing deoxyribo- and ribonucleoside triphosphates to corresponding nucleoside monophosphates, thereby preventing misincorporation of 8-oxoGua into DNA and RNA, which would cause mutation and phenotypic suppression, respectively. Here, we report that the MutT protein has additional activities for cleaning up the nucleotide pools to ensure accurate DNA replication and transcription. It hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP with a K(m) of 0.058 microM, a value considerably lower than that for its normal counterpart, dGDP (170 microM). Furthermore, the MutT possesses an activity to degrade 8-oxo-GDP to the related nucleoside monophosphate, with a K(m) value 8000 times lower than that for GDP. These multiple enzyme activities of the MutT protein would facilitate the high fidelity of DNA and RNA syntheses. << Less
Biochemistry 44:6670-6674(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP.
Fujikawa K., Kamiya H., Yakushiji H., Nakabeppu Y., Kasai H.
The human nucleotide pool sanitization enzyme, MTH1, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dATP in addition to 8-hydroxy-dGTP. We report here that human MTH1 is highly specific for 2-hydroxy-ATP, among the cognate ribonucleoside triphosphates. The pyrophosphatase activities for 8-hydroxy-GTP, 2- ... >> More
The human nucleotide pool sanitization enzyme, MTH1, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dATP in addition to 8-hydroxy-dGTP. We report here that human MTH1 is highly specific for 2-hydroxy-ATP, among the cognate ribonucleoside triphosphates. The pyrophosphatase activities for 8-hydroxy-GTP, 2-hydroxy-ATP and 8-hydroxy-ATP were measured by high-performance liquid chromatography. The kinetic parameters thus obtained indicate that the catalytic efficiencies of MTH1 are in the order of 2-hydroxy-dATP > 2-hydroxy-ATP > 8-hydroxy-dGTP > 8-hydroxy-dATP >> dGTP > 8-hydroxy-GTP > 8-hydroxy-ATP. Notably, MTH1 had the highest affinity for 2-hydroxy-ATP among the known substrates. ATP is involved in energy metabolism and signal transduction, and is a precursor in RNA synthesis. We suggest that the 2-hydroxy-ATP hydrolyzing activity of MTH1 might prevent the perturbation of these ATP-related pathways by the oxidized ATP. << Less
Nucleic Acids Res. 29:449-454(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
AtNUDX1, an 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis.
Yoshimura K., Ogawa T., Ueda Y., Shigeoka S.
Cellular DNA, RNA and their precursor nucleotides are at high risk of being oxidized by reactive oxygen species. An oxidized base, 8-oxo-7,8-dihydro-2'-(deoxy)guanosine, can pair with both adenine and cytosine, and thus would cause both replicational and translational errors. Previously, we have r ... >> More
Cellular DNA, RNA and their precursor nucleotides are at high risk of being oxidized by reactive oxygen species. An oxidized base, 8-oxo-7,8-dihydro-2'-(deoxy)guanosine, can pair with both adenine and cytosine, and thus would cause both replicational and translational errors. Previously, we have reported that an Arabidopsis Nudix hydrolase, AtNUDX1, acts to hydrolyze an oxidized deoxyribonucleotide, 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here we showed that 8-oxo-dGTP pyrophosphohydrolase activity is not exhibited by any other Arabidopsis Nudix hydrolase. AtNUDX1 acted on an oxidized ribonucleotide, 8-oxo-GTP, with high affinity (K(m) 28.1 microM). In a transcriptional mutational analysis using the lacZ reporter gene, the phenotypic suppression of the lacZ amber mutation in a mutT-deficient Escherichia coli strain caused by the misincorporation of 8-oxo-GTP into the mRNA was significantly diminished by expression of AtNUDX1. These findings suggest that AtNUDX1 prevents transcriptional errors in vivo. A confocal microscopic analysis using a green fluorescent protein (GFP) fusion protein demonstrated that AtNUDX1 is distributed in the cytosol, where the main pool of nucleotides in the cells exists. The level of 8-oxo-guanosine in genomic DNA was significantly increased in knockout nudx1 plants compared with wild-type plants under normal and oxidative stress (3 microM paraquat) conditions. The results obtained here indicate that AtNUDX1 functions in cellular defense against oxidative DNA and RNA damage through the sanitization of their precursor pools in the cytosol in Arabidopsis cells. << Less
Plant Cell Physiol. 48:1438-1449(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural and Kinetic Studies of the Human Nudix Hydrolase MTH1 Reveal the Mechanism for Its Broad Substrate Specificity.
Waz S., Nakamura T., Hirata K., Koga-Ogawa Y., Chirifu M., Arimori T., Tamada T., Ikemizu S., Nakabeppu Y., Yamagata Y.
The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides i ... >> More
The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells. Unlike <i>Escherichia coli</i> MutT, which shows high substrate specificity for 8-oxoguanine nucleotides, hMTH1 has broad substrate specificity for oxidized nucleotides, including 8-oxo-dGTP and 2-oxo-dATP. However, the reason for this broad substrate specificity remains unclear. Here, we determined crystal structures of hMTH1 in complex with 8-oxo-dGTP or 2-oxo-dATP at neutral pH. These structures based on high quality data showed that the base moieties of two substrates are located on the similar but not the same position in the substrate binding pocket and adopt a different hydrogen-bonding pattern, and both triphosphate moieties bind to the hMTH1 Nudix motif (<i>i.e.</i> the hydrolase motif) similarly and align for the hydrolysis reaction. We also performed kinetic assays on the substrate-binding Asp-120 mutants (D120N and D120A), and determined their crystal structures in complex with the substrates. Analyses of bond lengths with high-resolution X-ray data and the relationship between the structure and enzymatic activity revealed that hMTH1 recognizes the different oxidized nucleotides via an exchange of the protonation state at two neighboring aspartate residues (Asp-119 and Asp-120) in its substrate binding pocket. To our knowledge, this mechanism of broad substrate recognition by enzymes has not been reported previously and may have relevance for anticancer drug development strategies targeting hMTH1. << Less
J. Biol. Chem. 292:2785-2794(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.