Reaction participants Show >> << Hide
- Name help_outline 2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-rhamnose Identifier CHEBI:62478 Charge -1 Formula C12H17O10 InChIKeyhelp_outline PBUKNNGDHZLXKG-UYKOWFBBSA-M SMILEShelp_outline C[C@@H]1O[C@@H](O)[C@H](O[C@H]2OC(=C[C@H](O)[C@H]2O)C([O-])=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-dehydro-4-deoxy-D-glucuronate Identifier CHEBI:17117 Charge -1 Formula C6H7O6 InChIKeyhelp_outline IMUGYKFHMJLTOU-UCORVYFPSA-M SMILEShelp_outline [H]C(=O)[C@H](O)[C@@H](O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-rhamnopyranose Identifier CHEBI:62346 (CAS: 3615-41-6) help_outline Charge 0 Formula C6H12O5 InChIKeyhelp_outline SHZGCJCMOBCMKK-JFNONXLTSA-N SMILEShelp_outline C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30927 | RHEA:30928 | RHEA:30929 | RHEA:30930 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline |
Publications
-
Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate.
Itoh T., Ochiai A., Mikami B., Hashimoto W., Murata K.
Bacillus subtilis strain 168 YteR has been identified as a novel enzyme "unsaturated rhamnogalacturonyl hydrolase" classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, rele ... >> More
Bacillus subtilis strain 168 YteR has been identified as a novel enzyme "unsaturated rhamnogalacturonyl hydrolase" classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, releasing unsaturated galacturonic acid (DeltaGalA) from the substrate. The most likely candidate catalytic residue is Asp-143. Here, we show the structure of D143N in complex with unsaturated RG disaccharide (substrate) determined at 1.9A resolution by X-ray crystallography. This structural feature directly contributes to the postulation of the enzyme reaction mechanism. YteR triggers the hydration of vinyl ether group in DeltaGalA, but not of glycoside bond, by using Asp-143 as a general acid and base catalyst. Asp-143 donates proton to the double bond of DeltaGalA as an acid catalyst and also deprotonates a water molecule as a base catalyst. Deprotonated water molecule attacks the C5 atom of DeltaGalA. << Less
Biochem. Biophys. Res. Commun. 347:1021-1029(2006) [PubMed] [EuropePMC]
-
1.6 A crystal structure of YteR protein from Bacillus subtilis, a predicted lyase.
Zhang R., Minh T., Lezondra L., Korolev S., Moy S.F., Collart F., Joachimiak A.
-
A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide.
Itoh T., Ochiai A., Mikami B., Hashimoto W., Murata K.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic ... >> More
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria. << Less