Reaction participants Show >> << Hide
- Name help_outline 2-deoxy-D-ribose Identifier CHEBI:90761 Charge 0 Formula C5H10O4 InChIKeyhelp_outline PDWIQYODPROSQH-PYHARJCCSA-N SMILEShelp_outline C(O)[C@H]1OC(O)C[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-deoxy-D-ribose 5-phosphate Identifier CHEBI:62877 Charge -2 Formula C5H9O7P InChIKeyhelp_outline KKZFLSZAWCYPOC-PYHARJCCSA-L SMILEShelp_outline [C@H]1([C@H](CC(O1)O)O)COP([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30871 | RHEA:30872 | RHEA:30873 | RHEA:30874 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A deoxyribokinase from Lactobacillus plantarum.
GINSBURG A.
-
Genetic and biochemical characterization of Salmonella enterica serovar typhi deoxyribokinase.
Tourneux L., Bucurenci N., Saveanu C., Kaminski P.A., Bouzon M., Pistotnik E., Namane A., Marliere P., Barzu O., Li De La Sierra I., Neuhard J., Gilles A.M.
We identified in the genome of Salmonella enterica serovar Typhi the gene encoding deoxyribokinase, deoK. Two other genes, vicinal to deoK, were determined to encode the putative deoxyribose transporter (deoP) and a repressor protein (deoQ). This locus, located between the uhpA and ilvN genes, is ... >> More
We identified in the genome of Salmonella enterica serovar Typhi the gene encoding deoxyribokinase, deoK. Two other genes, vicinal to deoK, were determined to encode the putative deoxyribose transporter (deoP) and a repressor protein (deoQ). This locus, located between the uhpA and ilvN genes, is absent in Escherichia coli. The deoK gene inserted on a plasmid provides a selectable marker in E. coli for growth on deoxyribose-containing medium. Deoxyribokinase is a 306-amino-acid protein which exhibits about 35% identity with ribokinase from serovar Typhi, S. enterica serovar Typhimurium, or E. coli. The catalytic properties of the recombinant deoxyribokinase overproduced in E. coli correspond to those previously described for the enzyme isolated from serovar Typhimurium. From a sequence comparison between serovar Typhi deoxyribokinase and E. coli ribokinase, whose crystal structure was recently solved, we deduced that a key residue differentiating ribose and deoxyribose is Met10, which in ribokinase is replaced by Asn14. Replacement by site-directed mutagenesis of Met10 with Asn decreased the V(max) of deoxyribokinase by a factor of 2.5 and increased the K(m) for deoxyribose by a factor of 70, compared to the parent enzyme. << Less
-
2-deoxyribose gene-enzyme complex in Salmonella typhimurium. I. Isolation and enzymatic characterization of 2-deoxyribose-negative mutants.
Hoffee P.A.
Salmonella typhimurium was found to utilize 2-deoxyribose as a sole carbon and energy source. Cells grown in the presence of deoxyribose contained increased levels of deoxyribose kinase, thymidine phosphorylase, and two forms of deoxyribose-5-phosphate aldolase (DR5P aldolase). One form of DR5P al ... >> More
Salmonella typhimurium was found to utilize 2-deoxyribose as a sole carbon and energy source. Cells grown in the presence of deoxyribose contained increased levels of deoxyribose kinase, thymidine phosphorylase, and two forms of deoxyribose-5-phosphate aldolase (DR5P aldolase). One form of DR5P aldolase was induced by deoxyribose and coordinately regulated with deoxyribose kinase. The second form of DR5P aldolase was induced by deoxyribose-5-phosphate and coordinately regulated with thymidine phosphorylase. Mutants unable to ferment deoxyribose have been isolated and shown to be lacking either deoxyribose kinase or deoxyribose permease, but none has been found from which DR5P aldolase is missing. Thymine-requiring mutants which are able to grow on low levels of thymine have been isolated and shown, in some cases, to be lacking one or both DR5P aldolases. << Less
-
Pentose fermentation by Lactobacillus plantarum. V. Fermentation of 2-deoxy-D-ribose.
DOMAGK G.F., HORECKER B.L.