Reaction participants Show >> << Hide
- Name help_outline dGTP Identifier CHEBI:61429 Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline HAAZLUGHYHWQIW-KVQBGUIXSA-J SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@H]1C[C@H](O)[C@@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 219 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dGDP Identifier CHEBI:58595 (Beilstein: 11523263) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline CIKGWCTVFSRMJU-KVQBGUIXSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@H]1C[C@H](O)[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphoenolpyruvate Identifier CHEBI:58702 (Beilstein: 3951723) help_outline Charge -3 Formula C3H2O6P InChIKeyhelp_outline DTBNBXWJWCWCIK-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30791 | RHEA:30792 | RHEA:30793 | RHEA:30794 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Chemical and enzymatic characterization of recombinant rabbit muscle pyruvate kinase.
Boehme C., Bieber F., Linnemann J., Breitling R., Lorkowski S., Reissmann S.
The stepwise synthesis of thymidine triphosphate (TTP) requires a kinase for phosphorylation in the last step. Because pyruvate kinase (PK) using phosphoenolpyruvate (PEP) as substrate can regenerate adenosine triphosphate and phosphorylate thymidine diphosphate as well, we chose this enzyme for t ... >> More
The stepwise synthesis of thymidine triphosphate (TTP) requires a kinase for phosphorylation in the last step. Because pyruvate kinase (PK) using phosphoenolpyruvate (PEP) as substrate can regenerate adenosine triphosphate and phosphorylate thymidine diphosphate as well, we chose this enzyme for the synthesis of TTP via an enzymatic cascade reaction. The metalloenzyme PK shows pronounced promiscuity and therefore fits well to the conditions of this reaction. PK commonly used today is isolated from rabbit muscle. We cloned and expressed the respective open reading frame in Escherichia coli, purified, and characterized the His-tagged recombinant enzyme. The enzyme has an activity optimum at 37°C and in the pH range from 7.4 to 7.8. K(M) constants conformed well with the isolated native enzyme for adenosine diphosphate (ADP) to 0.37±0.02 mM and for PEP to 0.07±0.01 mM. The recombinant enzyme shows the following range in its substrate specificity: ADP>dADP>dGDP>dCDP>thymidine diphosphate (TDP). It allows the phosphorylation of TDP to TTP in high yield (up to 95%). The metal ions Mg(2+) and K(+) are necessary for full enzymatic activity. The addition of transition metal ions such as Mn(2+), Cu(2+), Co(2+), and Ni(2+) reduces activity. Storage of the enzyme at -20°C retains full activity. << Less
Biol Chem 394:695-701(2013) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Structural Basis of Nucleotide Selectivity in Pyruvate Kinase.
Taguchi A., Nakashima R., Nishino K.
Nucleoside triphosphates are indispensable in numerous biological processes, with enzymes involved in their biogenesis playing pivotal roles in cell proliferation. Pyruvate kinase (PYK), commonly regarded as the terminal glycolytic enzyme that generates ATP in tandem with pyruvate, is also capable ... >> More
Nucleoside triphosphates are indispensable in numerous biological processes, with enzymes involved in their biogenesis playing pivotal roles in cell proliferation. Pyruvate kinase (PYK), commonly regarded as the terminal glycolytic enzyme that generates ATP in tandem with pyruvate, is also capable of synthesizing a wide range of nucleoside triphosphates from their diphosphate precursors. Despite their substrate promiscuity, some PYKs show preference towards specific nucleotides, suggesting an underlying mechanism for differentiating nucleotide bases. However, the thorough characterization of this mechanism has been hindered by the paucity of nucleotide-bound PYK structures. Here, we present crystal structures of Streptococcus pneumoniae PYK in complex with four different nucleotides. These structures facilitate direct comparison of the protein-nucleotide interactions and offer structural insights into its pronounced selectivity for GTP synthesis. Notably, this selectivity is dependent on a sequence motif in the nucleotide recognition site that is widely present among prokaryotic PYKs, particularly in Firmicutes species. We show that pneumococcal cell growth is significantly impaired when expressing a PYK variant with compromised GTP and UTP synthesis activity, underscoring the importance of PYK in maintaining nucleotide homeostasis. Our findings collectively advance our understanding of PYK biochemistry and prokaryotic metabolism. << Less
J Mol Biol 436:168708-168708(2024) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.