Enzymes
UniProtKB help_outline | 7,724 proteins |
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoate Identifier CHEBI:7896 (Beilstein: 3589907; CAS: 143-20-4) help_outline Charge -1 Formula C16H31O2 InChIKeyhelp_outline IPCSVZSSVZVIGE-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 92 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoyl-CoA Identifier CHEBI:57379 Charge -4 Formula C37H62N7O17P3S InChIKeyhelp_outline MNBKLUUYKPBKDU-BBECNAHFSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(CCCCCCCCCCCCCCC)=O)=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 110 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30751 | RHEA:30752 | RHEA:30753 | RHEA:30754 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase.
Morgan-Kiss R.M., Cronan J.E.
We recently reported a new metabolic competency for Escherichia coli, the ability to degrade and utilize fatty acids of various chain lengths as sole carbon and energy sources. This beta-oxidation pathway is distinct from the previously described aerobic fatty acid degradation pathway and requires ... >> More
We recently reported a new metabolic competency for Escherichia coli, the ability to degrade and utilize fatty acids of various chain lengths as sole carbon and energy sources. This beta-oxidation pathway is distinct from the previously described aerobic fatty acid degradation pathway and requires enzymes encoded by two operons, yfcYX and ydiQRSTD. The yfcYX operon (renamed fadIJ) encodes enzymes required for hydration, oxidation, and thiolytic cleavage of the acyl chain. The ydiQRSTD operon encodes a putative acyl-CoA synthetase, ydiD (renamed fadK), as well as putative electron transport chain components. We report that FadK is as an acyl-CoA synthetase that has a preference for short chain length fatty acid substrates (<10 C atoms). The enzymatic mechanism of FadK is similar to other acyl-CoA synthetases in that it forms an acyl-AMP intermediate prior to the formation of the final acyl-CoA product. Expression of FadK is repressed during aerobic growth and is maximally expressed under anaerobic conditions in the presence of the terminal electron acceptor, fumarate. << Less
J. Biol. Chem. 279:37324-37333(2004) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation.
Fulda M., Shockey J., Werber M., Wolter F.P., Heinz E.
Post-germinative growth of oilseeds is dependent on the breakdown of the stored lipid reserves. Long-chain acyl-CoA synthetase activities (LACS) are critically involved in this process by activating the released free fatty acids and thus feeding the beta-oxidation cycle in glyoxysomes. Here we rep ... >> More
Post-germinative growth of oilseeds is dependent on the breakdown of the stored lipid reserves. Long-chain acyl-CoA synthetase activities (LACS) are critically involved in this process by activating the released free fatty acids and thus feeding the beta-oxidation cycle in glyoxysomes. Here we report on the identification of two LACS genes, AtLACS6 and AtLACS7 from Arabidopsis thaliana coding for peroxisomal LACS proteins. The subcellular localization was verified by co-expression studies of spectral variants of the green fluorescent protein (GFP). While AtLACS6 is targeted by a type 2 (PTS2) peroxisomal targeting sequence, for AtLACS7 a functional PTS1 as well as a PTS2 could be demonstrated. Possible explanations for this potentially redundant targeting information will be discussed. Expression studies of both genes revealed a strong induction 1 day after germination resembling the expression pattern of other genes involved in beta-oxidation. Analysis of the substrate specificities of the two LACS proteins demonstrated enzymatic activity for both enzymes with the whole spectrum of fatty acids found in stored lipid reserves. These results suggest that both LACS proteins might have overlapping functions and are able to initiate beta-oxidation in plant peroxisomes. << Less
Plant J. 32:93-103(2002) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism.
Steinberg S.J., Wang S.J., Kim D.G., Mihalik S.J., Watkins P.A.
Very-long-chain acyl-CoA synthetases (VLCS) activate very-long-chain fatty acids (VLCFA) containing 22 or more carbons to their CoA derivatives. We cloned the human ortholog (hVLCS) of the gene encoding the rat liver enzyme (rVLCS). Both hVLCS and rVLCS contain 620 amino acids, are expressed prima ... >> More
Very-long-chain acyl-CoA synthetases (VLCS) activate very-long-chain fatty acids (VLCFA) containing 22 or more carbons to their CoA derivatives. We cloned the human ortholog (hVLCS) of the gene encoding the rat liver enzyme (rVLCS). Both hVLCS and rVLCS contain 620 amino acids, are expressed primarily in liver and kidney, and have a potential peroxisome targeting signal 1 (-LKL) at their carboxy termini. When expressed in COS-1 cells, hVLCS activated the VLCFA lignoceric acid (C24:0), a long-chain fatty acid (C16:0), and two branched-chain fatty acids, phytanic acid and pristanic acid. Immunofluorescence and immunoblot studies localized hVLCS to both peroxisomes and endoplasmic reticulum. In peroxisomes of HepG2 cells, hVLCS was topographically oriented facing the matrix and not the cytoplasm. This orientation, coupled with the observation that hVLCS activates branched-chain fatty acids, suggests that hVLCS could play a role in the intraperoxisomal reactivation of pristanic acid produced via alpha-oxidation of phytanic acid. << Less
Biochem. Biophys. Res. Commun. 257:615-621(1999) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Association between SAH, an acyl-CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension.
Iwai N., Katsuya T., Mannami T., Higaki J., Ogihara T., Kokame K., Ogata J., Baba S.
<h4>Background</h4>The SA gene (SAH) has been isolated by differential screening from a genetically hypertensive rat strain as a candidate gene that may contribute to hypertension. Recently, the SA protein has been reported to be highly homologous to bovine xenobiotic-metabolizing medium-chain fat ... >> More
<h4>Background</h4>The SA gene (SAH) has been isolated by differential screening from a genetically hypertensive rat strain as a candidate gene that may contribute to hypertension. Recently, the SA protein has been reported to be highly homologous to bovine xenobiotic-metabolizing medium-chain fatty acid:CoA ligase.<h4>Methods and results</h4>To clarify the pathophysiological significance of SAH, we searched for polymorphisms of human SAH and performed association studies using a large cohort (4000 subjects) representing the general population in Japan. We found 2 polymorphisms in the promoter region and single-nucleotide polymorphisms in introns 5, 7, and 12 and exon 8. One of the variants, an A/G polymorphism in intron 12, just 7 bp upstream from exon 13, strongly affected plasma triglyceride, plasma cholesterol, body mass index (BMI), waist-to-hip ratio (W/H), and blood pressure status. The effect of this genotype on blood pressure seems to be conveyed through its effects on BMI and W/H. Transient expression of the SA protein in mammalian cells confirmed that it is expressed in mitochondria and has medium-chain fatty acid:CoA ligase activity. The A/G polymorphism was found to be associated with the expression level of SA mRNA in peripheral mononuclear cells in vivo.<h4>Conclusions</h4>The G allele of SAH was found to be associated with multiple risk factors, including hypertriglyceridemia, hypercholesterolemia, obesity, and hypertension. This observation should open a new area for future research in multiple-risk-factor syndromes. << Less
Circulation 105:41-47(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phytanic acid activation in rat liver peroxisomes is catalyzed by long-chain acyl-CoA synthetase.
Watkins P.A., Howard A.E., Gould S.J., Avigan J., Mihalik S.J.
In Refsum disease, disorders of peroxisome biogenesis, and rhizomelic chondrodysplasia punctata, pathological accumulation of phytanic acid results from impaired alpha-oxidation of this branched-chain fatty acid. Previous studies from this laboratory indicated that activation of phytanic acid to i ... >> More
In Refsum disease, disorders of peroxisome biogenesis, and rhizomelic chondrodysplasia punctata, pathological accumulation of phytanic acid results from impaired alpha-oxidation of this branched-chain fatty acid. Previous studies from this laboratory indicated that activation of phytanic acid to its CoA derivative precedes its alpha-oxidation in peroxisomes. It was reported that this reaction is catalyzed by a unique phytanoyl-CoA synthetase in human peroxisomes. We wanted to determine whether phytanic acid activation in rats required long-chain acyl-CoA synthetase (LCS), very long-chain acyl-CoA synthetase (VLCS), or a different enzyme. To test directly whether LCS could activate phytanic acid, rat liver cDNA encoding this enzyme was transcribed and translated in vitro. The expressed enzyme had both LCS activity (assayed with palmitic acid, C16: 0) and phytanoyl-CoA synthetase activity; VLCS activity (assayed with lignoceric acid, C24: 0) was not detectable. The ratio of phytanoyl-CoA synthetized activity to palmitoyl-CoA synthetase activity for LCS synthetized in vitro (approximately 205) was higher than that observed in peroxisomes isolated from rat liver (5-10%), suggesting that the expressed enzyme contained sufficient phytanoyl-Coa synthetase activity to account for all activity observed in intact peroxisomes. Further experiments were carried out to verify that phytanic acid was activated by LCS in rat liver peroxisomes. Attempts to separate LCS from phytanoyl-CoA synthetase by chromatography on several matrices were unsuccessful. Preparative isoelectric focusing revealed that phytanoyl-CoA synthetase and LCS had indistinguishable isoelectric points. Phytanoyl-CoA synthetase activity was inhibited by unlabeled palmitic acid but not by lignoceric acid. Heat treatment inactivated both phytanoyl-CoA and palmitoyl-CoA synthetase activities at similar rates. 5,8,11,14-Eicosatetraynoic acid inhibited activation of phytanic acid and palmitic acid in a parallel dose-dependent manner, whereas activation of lignoceric acid was not affected. These data support our conclusion that rat liver LCS, an enzyme known to be present in peroxisomal membranes, has phytanoyl-CoA synthetase activity. << Less
J. Lipid Res. 37:2288-2295(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate:CoA ligase.
Steinberg S.J., Mihalik S.J., Kim D.G., Cuebas D.A., Watkins P.A.
Unconjugated bile acids must be activated to their CoA thioesters before conjugation to taurine or glycine can occur. A human homolog of very long-chain acyl-CoA synthetase, hVLCS-H2, has two requisite properties of a bile acid:CoA ligase, liver specificity and an endoplasmic reticulum subcellular ... >> More
Unconjugated bile acids must be activated to their CoA thioesters before conjugation to taurine or glycine can occur. A human homolog of very long-chain acyl-CoA synthetase, hVLCS-H2, has two requisite properties of a bile acid:CoA ligase, liver specificity and an endoplasmic reticulum subcellular localization. We investigated the ability of this enzyme to activate the primary bile acid, cholic acid, to its CoA derivative. When expressed in COS-1 cells, hVLCS-H2 exhibited cholate:CoA ligase (choloyl-CoA synthetase) activity with both non-isotopic and radioactive assays. Other long- and very long-chain acyl-CoA synthetases were incapable of activating cholate. Endogenous choloyl-CoA synthetase activity was also detected in liver-derived HepG2 cells but not in kidney-derived COS-1 cells. Our results are consistent with a role for hVLCS-H2 in the re-activation and re-conjugation of bile acids entering liver from the enterohepatic circulation rather than in de novo bile acid synthesis. << Less
J. Biol. Chem. 275:15605-15608(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Long-chain acyl-CoA synthetase 4 modulates prostaglandin E(2) release from human arterial smooth muscle cells.
Golej D.L., Askari B., Kramer F., Barnhart S., Vivekanandan-Giri A., Pennathur S., Bornfeldt K.E.
Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids pla ... >> More
Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E₂ (PGE₂) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE₂. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE₂ secretion. Thus, ACSL4 modulates PGE₂ release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. << Less
J. Lipid Res. 52:782-793(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling.
Mihalik S.J., Steinberg S.J., Pei Z., Park J., Kim do G., Heinzer A.K., Dacremont G., Wanders R.J., Cuebas D.A., Smith K.D., Watkins P.A.
Bile acids are synthesized de novo in the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is ... >> More
Bile acids are synthesized de novo in the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is required at two points in bile acid metabolism. First, 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid, the 27-carbon precursor of cholic acid, must be activated to its CoA derivative before side chain cleavage via peroxisomal beta-oxidation. Second, reutilization of cholate and other C24 bile acids requires reactivation prior to re-conjugation. We reported previously that homolog 2 of very long-chain acyl-CoA synthetase (VLCS) can activate cholate (Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., and Watkins, P. A. (2000) J. Biol. Chem. 275, 15605-15608). We now show that this enzyme also activates chenodeoxycholate, the secondary bile acids deoxycholate and lithocholate, and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. In contrast, VLCS activated 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoate, but did not utilize any of the C24 bile acids as substrates. We hypothesize that the primary function of homolog 2 is in the reactivation and recycling of C24 bile acids, whereas VLCS participates in the de novo synthesis pathway. Results of in situ hybridization, topographic orientation, and inhibition studies are consistent with the proposed roles of these enzymes in bile acid metabolism. << Less
J. Biol. Chem. 277:24771-24779(2002) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
A novel mammalian bubblegum-related acyl-CoA synthetase restricted to testes and possibly involved in spermatogenesis.
Fraisl P., Tanaka H., Forss-Petter S., Lassmann H., Nishimune Y., Berger J.
We have characterized a new, membrane-associated acyl-CoA synthetase (ACS), termed bubblegum-related protein (BGR), which upon functional analysis demonstrated ACS activity capable of activating long- and very long-chain fatty acids. By multiple tissue RNA array and Northern blot analyses, human B ... >> More
We have characterized a new, membrane-associated acyl-CoA synthetase (ACS), termed bubblegum-related protein (BGR), which upon functional analysis demonstrated ACS activity capable of activating long- and very long-chain fatty acids. By multiple tissue RNA array and Northern blot analyses, human BGR mRNA was exclusively detected in testes. Murine Bgr mRNA was specifically expressed in pubertal and adult testes and was further demonstrated to be enriched in germ cells and Sertoli cells while present at a lower level in Leydig cells both by in situ hybridization and cell type fractionation. The complex 5'-end of the BGR mRNA appears to underlie translational control leading to differential utilization of alternative translation start sites. Thus, the BGR gene expands the bubblegum ACS family with a testes-specific, developmentally regulated member that may play a role in spermatogenesis. << Less
Arch. Biochem. Biophys. 451:23-33(2006) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.
Daniel J., Sirakova T., Kolattukudy P.
Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lip ... >> More
Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids. << Less
PLoS ONE 9:e114877-e114877(2014) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Dissecting the role of critical residues and substrate preference of a fatty acyl-CoA synthetase (FadD13) of Mycobacterium tuberculosis.
Khare G., Gupta V., Gupta R.K., Gupta R., Bhat R., Tyagi A.K.
Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an ... >> More
Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an attractive target for the development of new antitubercular drugs. This study is focused on the structure-function relationship of Fatty Acyl-CoA Synthetase (FadD13, Rv3089) belonging to the mymA operon. Eight site-directed mutants of FadD13 were designed, constructed and analyzed for the structural-functional integrity of the enzyme. The study revealed that mutation of Lys(487) resulted in approximately 95% loss of the activity thus demonstrating its crucial requirement for the enzymatic activity. Comparison of the kinetic parameters showed the residues Lys(172) and Ala(302) to be involved in the binding of ATP and Ser(404) in the binding of CoenzymeA. The influence of mutations of the residues Val(209) and Trp(377) emphasized their importance in maintaining the structural integrity of FadD13. Besides, we show a synergistic influence of fatty acid and ATP binding on the conformation and rigidity of FadD13. FadD13 represents the first Fatty Acyl-CoA Synthetase to display biphasic kinetics for fatty acids. FadD13 exhibits a distinct preference for C(26)/C(24) fatty acids, which in the light of earlier reported observations further substantiates the role of the mymA operon in remodeling the cell envelope of intracellular M.tb under acidic conditions. A three-dimensional model of FadD13 was generated; the docking of ATP to the active site verified its interaction with Lys(172), Ala(302) and Lys(487) and corresponded well with the results of the mutational studies. Our study provides a significant understanding of the FadD13 protein including the identification of residues important for its activity as well as in the maintenance of structural integrity. We believe that the findings of this study will provide valuable inputs in the development of inhibitors against the mymA operon, an important target for the development of antitubercular drugs. << Less
PLoS ONE 4:E8387-E8387(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana.
Kienow L., Schneider K., Bartsch M., Stuible H.-P., Weng H., Miersch O., Wasternack C., Kombrink E.
Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systema ... >> More
Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systematically explored by applying an extensive substrate screen, and it was uncovered that activation of fatty acids is the common feature of all active members of this protein family, thereby defining a new group of fatty acyl-CoA synthetase, which is distinct from the known LACS family. Significantly, four family members also displayed activity towards different biosynthetic precursors of jasmonic acid (JA), including 12-oxo-phytodienoic acid (OPDA), dinor-OPDA, 3-oxo-2(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8), and OPC-6. Detailed analysis of in vitro properties uncovered significant differences in substrate specificity for individual enzymes, but only one protein (At1g20510) showed OPC-8:CoA ligase activity. Its in vivo function was analysed by transcript and jasmonate profiling of Arabidopsis insertion mutants for the gene. OPC-8:CoA ligase expression was activated in response to wounding or infection in the wild type but was undetectable in the mutants, which also exhibited OPC-8 accumulation and reduced levels of JA. In addition, the developmental, tissue- and cell-type specific expression pattern of the gene, and regulatory properties of its promoter were monitored by analysing promoter::GUS reporter lines. Collectively, the results demonstrate that OPC-8:CoA ligase catalyses an essential step in JA biosynthesis by initiating the beta-oxidative chain shortening of the carboxylic acid side chain of its precursors, and, in accordance with this function, the protein is localized in peroxisomes. << Less
J. Exp. Bot. 59:403-419(2008) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
Arora P., Goyal A., Natarajan V.T., Rajakumara E., Verma P., Gupta R., Yousuf M., Trivedi O.A., Mohanty D., Tyagi A., Sankaranarayanan R., Gokhale R.S.
The recent discovery of fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis (Mtb) provided a new perspective of fatty acid activation. These proteins convert fatty acids to the corresponding adenylates, which are intermediates of acyl-CoA-synthesizing fatty acyl-CoA ligases (FACLs). Prese ... >> More
The recent discovery of fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis (Mtb) provided a new perspective of fatty acid activation. These proteins convert fatty acids to the corresponding adenylates, which are intermediates of acyl-CoA-synthesizing fatty acyl-CoA ligases (FACLs). Presently, it is not evident how obligate pathogens such as Mtb have evolved such new themes of functional versatility and whether the activation of fatty acids to acyladenylates could indeed be a general mechanism. Here, based on elucidation of the first structure of an FAAL protein and by generating loss-of-function and gain-of-function mutants that interconvert FAAL and FACL activities, we demonstrate that an insertion motif dictates formation of acyladenylate. Because FAALs in Mtb are crucial nodes in the biosynthetic network of virulent lipids, inhibitors directed against these proteins provide a unique multipronged approach to simultaneously disrupting several pathways. << Less
Nat. Chem. Biol. 5:166-173(2009) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Mouse very long-chain acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells.
Pei Z., Fraisl P., Berger J., Jia Z., Forss-Petter S., Watkins P.A.
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The ... >> More
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The predicted amino acid sequence contains two highly conserved motifs characteristic of acyl-CoA synthetases. Northern blot analysis revealed that the mouse Acsvl3 mRNA is highly expressed in adrenal gland, testis, and ovary, with lower expression in the brain of adult mice. A developmental Northern blot revealed that Acsvl3 mRNA levels were significantly higher in embryonic mouse brain (embryonic days 12-14) than in newborn or adult mice, suggesting a possible role in nervous system development. Immunohistochemistry revealed high ACSVL3 expression in adrenal cortical cells, spermatocytes and interstitial cells of the testis, theca cells of the ovary, cerebral cortical neurons, and cerebellar Purkinje cells. Endogenous ACSVL3 was found primarily in mitochondria of MA-10 and Neuro2a cells by both Western blot analysis of subcellular fractions and immunofluorescence analysis. In MA-10 cells, loss-of-function studies using RNA interference confirmed that endogenous ACSVL3 is an acyl-CoA synthetase capable of activating both long-chain (C16:0) and very long-chain (C24:0) fatty acids. However, despite decreased acyl-CoA synthetase activity, initial rates of fatty acid uptake were unaffected by knockdown of Acsvl3 expression in MA-10 cells. These studies cast doubt on the designation of ACSVL3 as a fatty acid transport protein. << Less
J. Biol. Chem. 279:54454-54462(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p.
Knoll L.J., Johnson D.R., Gordon J.I.
The efficiency and specificity of protein N-myristoylation appear to be influenced by the availability of myristoyl-CoA and other potential acyl-CoA substrates of myristoyl-CoA:protein N-myristoyltransferase. Recent studies have revealed that Saccharomyces cerevisiae contains at least three acyl-C ... >> More
The efficiency and specificity of protein N-myristoylation appear to be influenced by the availability of myristoyl-CoA and other potential acyl-CoA substrates of myristoyl-CoA:protein N-myristoyltransferase. Recent studies have revealed that Saccharomyces cerevisiae contains at least three acyl-CoA synthetase genes (FAA for fatty acid activation). We have expressed Faa1p, Faa2p, and Faa3p in a strain of Escherichia coli that lacks its own endogenous acyl-CoA synthetase (FadD). Each S. cerevisiae acyl-CoA synthetase contained a carboxyl-terminal His tag so that it could be purified to homogeneity in a single step using nickel chelate affinity chromatography. In vitro assays of C3:0-C24:0 fatty acids indicate that Faa1p prefers C12:0-C16:0, with myristic and pentadecanoic acid (C15:0) having the highest activities. Faa2p can accommodate a wider range of acyl chain lengths: C9:0-C13:0 are preferred and have equivalent activities, although C7:0-C17:0 fatty acids are tolerated as substrates with no greater than a 2-fold variation in specific activity. The myristoyl-CoA synthetase activities of Faa1p and Faa2p are 2 orders of magnitude greater than that of Faa3p in vitro. Faa3p has a preference for C16 and C18 fatty acids with a cis-double bond at C-9-C-10. The temperature optimum for Faa1p is 30 degrees C, while Faa2p and Faa3p have the greatest activities at 25 degrees C. These in vitro observations were confirmed using two in vivo assays: (i) measurement of the ability of each S. cerevisiae acyl-CoA synthetase to direct the incorporation of exogenously derived tritiated myristate, palmitate, or oleate into cellular phospholipids produced in a fadD-strain of E. coli during exponential growth at 24 or 37 degrees C and (ii) measurement of the incorporation of [3H]myristate into a yeast N-myristoylprotein coexpressed with Nmt1p and Faa1p, Faa2p, or Faa3p in the fadD-strain. << Less
J. Biol. Chem. 269:16348-16356(1994) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.
-
Very long-chain acyl-CoA synthetase 3: overexpression and growth dependence in lung cancer.
Pei Z., Fraisl P., Shi X., Gabrielson E., Forss-Petter S., Berger J., Watkins P.A.
Lung cancer is the leading cause of cancer deaths worldwide. In the United States, only one in six lung cancer patients survives five years after diagnosis. These statistics may improve if new therapeutic targets are identified. We previously reported that an enzyme of fatty acid metabolism, very ... >> More
Lung cancer is the leading cause of cancer deaths worldwide. In the United States, only one in six lung cancer patients survives five years after diagnosis. These statistics may improve if new therapeutic targets are identified. We previously reported that an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), is overexpressed in malignant glioma, and that depleting glioblastoma cells of ACSVL3 diminishes their malignant properties. To determine whether ACSVL3 expression was also increased in lung cancer, we studied tumor histologic sections and lung cancer cell lines. Immunohistochemical analysis of normal human lung showed moderate ACSVL3 expression only in bronchial epithelial cells. In contrast, all of 69 different lung tumors tested, including adeno-, squamous cell, large cell, and small cell carcinomas, had robustly elevated ACSVL3 levels. Western blot analysis of lung cancer cell lines derived from these tumor types also had significantly increased ACSVL3 protein compared to normal bronchial epithelial cells. Decreasing the growth rate of lung cancer cell lines did not change ACSVL3 expression. However, knocking down ACSVL3 expression by RNA interference reduced cell growth rates in culture by 65-76%, and the ability of tumor cells to form colonies in soft agar suspension by 65-80%. We also conducted studies to gain a better understanding of the biochemical properties of human ACSVL3. ACSVL3 mRNA was detected in many human tissues, but the expression pattern differed somewhat from that of the mouse. The enzyme activated long- and very long-chain saturated fatty acid substrates, as well as long-chain mono- and polyunsaturated fatty acids to their respective coenzyme A derivatives. Endogenous human ACSVL3 protein was found in a punctate subcellular compartment that partially colocalized with mitochondria as determined by immunofluorescence microscopy and subcellular fractionation. From these studies, we conclude that ACSVL3 is a promising new therapeutic target in lung cancer. << Less
PLoS ONE 8:E69392-E69392(2013) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
O-MACS, a novel member of the medium-chain acyl-CoA synthetase family, specifically expressed in the olfactory epithelium in a zone-specific manner.
Oka Y., Kobayakawa K., Nishizumi H., Miyamichi K., Hirose S., Tsuboi A., Sakano H.
In rodents, the olfactory epithelium (OE) can be divided into four topographically distinct zones, and each member of the odorant receptor (OR) gene family is expressed only in one particular zone. To study the functional significance of the zonal structure of the OE, we searched for genes express ... >> More
In rodents, the olfactory epithelium (OE) can be divided into four topographically distinct zones, and each member of the odorant receptor (OR) gene family is expressed only in one particular zone. To study the functional significance of the zonal structure of the OE, we searched for genes expressed in a zone-specific manner by using the differential display method. Among the clones isolated from the rat OE, we characterized a novel olfactory protein termed O-MACS, a member of the medium-chain acyl-CoA synthetase family. The o-macs gene encodes a protein of 580 amino acids, sharing 56-63% identity with other MACS family proteins. RT-PCR analysis demonstrated that the o-macs gene is expressed only in the OE, unlike other MACS family genes. In situ hybridization revealed that the o-macs transcripts are present in the neuronal cell layer of olfactory sensory neurons (OSNs) as well as in the supporting and basal cell layers in the most dorso-medial area (zone 1) of the OE. Developmental analysis revealed that the o-macs gene is already expressed on embryonic day 11.5, before the onset of the OR gene expression, in a restricted area within the rat olfactory placode. Recombinant O-MACS protein tagged with c-Myc and His6 demonstrated an acyl-CoA synthetase activity for fatty acid activation, and protein localization to mitochondria like other MACS family proteins. The present study indicates that this novel protein may play important roles in processing odorants in a zone-specific manner, or the zonal patterning of the OE during development. << Less
Eur. J. Biochem. 270:1995-2004(2003) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.