Enzymes
UniProtKB help_outline | 487 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3-aminopropanal Identifier CHEBI:58374 Charge 1 Formula C3H8NO InChIKeyhelp_outline PCXDJQZLDDHMGX-UHFFFAOYSA-O SMILEShelp_outline [H]C(=O)CC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-alanine Identifier CHEBI:57966 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline UCMIRNVEIXFBKS-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30695 | RHEA:30696 | RHEA:30697 | RHEA:30698 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and beta-alanine production during terminal oxidation of polyamines in apple fruit.
Zarei A., Trobacher C.P., Shelp B.J.
The last step of polyamine catabolism involves the oxidation of 3-aminopropanal or 4-aminobutanal via aminoaldehyde dehydrogenase. In this study, two apple (Malus x domestica) AMADH genes were selected (MdAMADH1 and MdAMADH2) as candidates for encoding 4-aminobutanal dehydrogenase activity. Maxima ... >> More
The last step of polyamine catabolism involves the oxidation of 3-aminopropanal or 4-aminobutanal via aminoaldehyde dehydrogenase. In this study, two apple (Malus x domestica) AMADH genes were selected (MdAMADH1 and MdAMADH2) as candidates for encoding 4-aminobutanal dehydrogenase activity. Maximal activity and catalytic efficiency were obtained with NAD(+) and 3-aminopropanal, followed by 4-aminobutanal, at pH 9.8. NAD(+) reduction was accompanied by the production of GABA and β-alanine, respectively, when 4-aminobutanal and 3-aminopropanal were utilized as substrates. MdAMADH2 was peroxisomal and MdAMADH1 cytosolic. These findings shed light on the potential role of apple AMADHs in 4-aminobutyrate and β-alanine production. << Less
-
The uncharacterized Pseudomonas aeruginosa PA4189 is a novel and efficient aminoacetaldehyde dehydrogenase.
Fernandez-Silva A., Juarez-Vazquez A.L., Gonzalez-Segura L., Juarez-Diaz J.A., Munoz-Clares R.A.
Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its stru ... >> More
Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its structure-function relationships. PA4189 is an NAD+-dependent aminoaldehyde dehydrogenase highly efficient with protonated aminoacetaldehyde and 3-aminopropionaldehyde, which are much more preferred to the non-protonated species as indicated by pH studies. Based on the higher activity with aminoacetaldehyde than with 3-aminopropionaldehyde, we propose that aminoacetaldehyde might be the PA4189 physiological substrate. Even though at the physiological pH of P. aeruginosa cells the non-protonated aminoacetaldehyde species will be predominant, and despite the competition of these species with the protonated ones, PA4189 would very efficiently oxidize ACTAL in vivo, producing glycine. To our knowledge, PA4189 is the first reported enzyme that might metabolize ACTAL, which is considered a dead-end metabolite because its consuming reactions are unknown. The PA4189 crystal structure reported here suggested that the charge and size of the active-site residue Glu457, which narrows the aldehyde-entrance tunnel, greatly define the specificity for small positively charged aldehydes, as confirmed by the kinetics of the E457G and E457Q variants. Glu457 and the residues that determine Glu457 conformation inside the active site are conserved in the PA4189 orthologs, which we only found in proteobacteria species. Also is conserved the PA4189 genomic neighborhood, which suggests that PA4189 participates in an uncharacterized metabolic pathway. Our results open the door to future efforts to characterize this pathway. << Less
Biochem. J. 480:259-281(2023) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Kinetic and structural analysis of human ALDH9A1.
Koncitikova R., Vigouroux A., Kopecna M., Sebela M., Morera S., Kopecny D.
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)<sup>+</sup>-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically charact ... >> More
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)<sup>+</sup>-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for <i>γ</i>-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αβE region consisting of an α-helix and a β-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete β-nicotinamide adenine dinucleotide (NAD<sup>+</sup>) binding pocket. << Less
Biosci. Rep. 0:0-0(2019) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production.
Zarei A., Trobacher C.P., Shelp B.J.
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD<sup>+</sup>-dependent aminoaldehyde dehydrogena ... >> More
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD<sup>+</sup>-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD<sup>+</sup> and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD<sup>+</sup> reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation. << Less
Sci. Rep. 6:35115-35115(2016) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.