Enzymes
UniProtKB help_outline | 2,228 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5'-thioinosine Identifier CHEBI:48595 (Beilstein: 9643240) help_outline Charge 0 Formula C11H14N4O4S InChIKeyhelp_outline GXYLOXCSJFJFKA-IOSLPCCCSA-N SMILEShelp_outline CSC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(O)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hypoxanthine Identifier CHEBI:17368 (Beilstein: 5811; CAS: 68-94-0) help_outline Charge 0 Formula C5H4N4O InChIKeyhelp_outline FDGQSTZJBFJUBT-UHFFFAOYSA-N SMILEShelp_outline O=c1[nH]cnc2nc[nH]c12 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-methyl-5-thio-α-D-ribose 1-phosphate Identifier CHEBI:58533 Charge -2 Formula C6H11O7PS InChIKeyhelp_outline JTFITTQBRJDSTL-KVTDHHQDSA-L SMILEShelp_outline CSC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30643 | RHEA:30644 | RHEA:30645 | RHEA:30646 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Methylthioinosine phosphorylase from Pseudomonas aeruginosa. Structure and annotation of a novel enzyme in quorum sensing.
Guan R., Ho M.-C., Almo S.C., Schramm V.L.
The PA3004 gene of Pseudomonas aeruginosa PAO1 was originally annotated as a 5'-methylthioadenosine phosphorylase (MTAP). However, the PA3004 encoded protein uses 5'-methylthioinosine (MTI) as a preferred substrate and represents the only known example of a specific MTI phosphorylase (MTIP). MTIP ... >> More
The PA3004 gene of Pseudomonas aeruginosa PAO1 was originally annotated as a 5'-methylthioadenosine phosphorylase (MTAP). However, the PA3004 encoded protein uses 5'-methylthioinosine (MTI) as a preferred substrate and represents the only known example of a specific MTI phosphorylase (MTIP). MTIP does not utilize 5'-methylthioadenosine (MTA). Inosine is a weak substrate with a k(cat)/K(m) value 290-fold less than MTI and is the second best substrate identified. The crystal structure of P. aeruginosa MTIP (PaMTIP) in complex with hypoxanthine was determined to 2.8 Å resolution and revealed a 3-fold symmetric homotrimer. The methylthioribose and phosphate binding regions of PaMTIP are similar to MTAPs, and the purine binding region is similar to that of purine nucleoside phosphorylases (PNPs). The catabolism of MTA in P. aeruginosa involves deamination to MTI and phosphorolysis to hypoxanthine (MTA → MTI → hypoxanthine). This pathway also exists in Plasmodium falciparum, where the purine nucleoside phosphorylase (PfPNP) acts on both inosine and MTI. Three tight-binding transition state analogue inhibitors of PaMTIP are identified with dissociation constants in the picomolar range. Inhibitor specificity suggests an early dissociative transition state for PaMTIP. Quorum sensing molecules are associated with MTA metabolism in bacterial pathogens suggesting PaMTIP as a potential therapeutic target. << Less