Reaction participants Show >> << Hide
- Name help_outline α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:61252 Charge -2 Formula C73H120O22P2 InChIKeyhelp_outline USQFNTGHPUIHAS-KQIVHAJBSA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)OP([O-])(=O)O[C@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O[C@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]3O)[C@H]2O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 107 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:61227 Charge -3 Formula C79H127O28P2 InChIKeyhelp_outline BZESDHPZHQIIGZ-LNZPCPEVSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)OP([O-])(=O)O[C@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O[C@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]3O[C@@H]3O[C@@H]([C@@H](O)[C@H](O)[C@H]3O)C([O-])=O)[C@H]2O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 577 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30631 | RHEA:30632 | RHEA:30633 | RHEA:30634 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase.
Barreras M., Salinas S.R., Abdian P.L., Kampel M.A., Ielpi L.
Xanthomonas campestris GumK (beta-1,2-glucuronosyltransferase) is a 44-kDa membrane-associated protein that is involved in the biosynthesis of xanthan, an exopolysaccharide crucial for this bacterium's phytopathogenicity. Xanthan also has many important industrial applications. The GumK enzyme is ... >> More
Xanthomonas campestris GumK (beta-1,2-glucuronosyltransferase) is a 44-kDa membrane-associated protein that is involved in the biosynthesis of xanthan, an exopolysaccharide crucial for this bacterium's phytopathogenicity. Xanthan also has many important industrial applications. The GumK enzyme is the founding member of the glycosyltransferase family 70 of carbohydrate-active enzymes, which is composed of bacterial glycosyltransferases involved in exopolysaccharide synthesis. No x-ray structures have been reported for this family. To better understand the mechanism of action of the bacterial glycosyltransferases in this family, the x-ray crystal structure of apo-GumK was solved at 1.9 angstroms resolution. The enzyme has two well defined Rossmann domains with a catalytic cleft between them, which is a typical feature of the glycosyltransferase B superfamily. Additionally, the crystal structure of GumK complexed with UDP was solved at 2.28 angstroms resolution. We identified a number of catalytically important residues, including Asp157, which serves as the general base in the transfer reaction. Residues Met231, Met273, Glu272, Tyr292, Met306, Lys307, and Gln310 interact with UDP, and mutation of these residues affected protein activity both in vitro and in vivo. The biological and structural data reported here shed light on the molecular basis for donor and acceptor selectivity in this glycosyltransferase family. These results also provide a rationale to obtain new polysaccharides by varying residues in the conserved alpha/beta/alpha structural motif of GumK. << Less
-
Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis.
Barreras M., Bianchet M.A., Ielpi L.
GumK is a membrane-associated inverting glucuronosyltransferase that is part of the biosynthetic route of xanthan, an industrially important exopolysaccharide produced by Xanthomonas campestris. The enzyme catalyzes the fourth glycosylation step in the pentasaccharide-P-P-polyisoprenyl assembly, a ... >> More
GumK is a membrane-associated inverting glucuronosyltransferase that is part of the biosynthetic route of xanthan, an industrially important exopolysaccharide produced by Xanthomonas campestris. The enzyme catalyzes the fourth glycosylation step in the pentasaccharide-P-P-polyisoprenyl assembly, an oligosaccharide diphosphate lipid intermediate in xanthan biosynthesis. GumK has marginal homology to other glycosyltransferases (GTs). It belongs to the CAZy family GT 70, for which no structure is currently available, and indirect biochemical evidence suggests that it also belongs to the GT-B structural superfamily. Crystals of recombinant GumK from X. campestris have been grown that diffract to 1.9 A resolution. Knowledge of the crystal structure of GumK will help in understanding xanthan biosynthesis and its regulation and will also allow a subsequent rational approach to enzyme design and engineering. The multiwavelength anomalous diffraction approach will be used to solve the phase problem. << Less
-
Functional characterization of GumK, a membrane-associated beta-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis.
Barreras M., Abdian P.L., Ielpi L.
Xanthomonas campestris is a Gram-negative bacterium that produces an exopolysaccharide known as xanthan gum. Xanthan is involved in a variety of biological functions, including pathogenesis, and is widely used in the industry as thickener and viscosifier. Although the genetics and biosynthetic pro ... >> More
Xanthomonas campestris is a Gram-negative bacterium that produces an exopolysaccharide known as xanthan gum. Xanthan is involved in a variety of biological functions, including pathogenesis, and is widely used in the industry as thickener and viscosifier. Although the genetics and biosynthetic process of xanthan are well documented, the enzymatic components have not been examined and no data on glycosyltransferases have been reported. We describe the functional characterization of the gumK gene product, an essential protein for xanthan synthesis. Immunoblots and complementation studies showed that GumK is a 44-kDa protein associated to the membrane fraction. This value corresponds to the expected molecular mass for GumK encoded by an extended open reading frame than proposed from previous genetic data and in X. campestris published complete genome. The protein was expressed in Escherichia coli cells. The purified protein catalyzed the transfer of a glucuronic acid residue from UDP-glucuronic acid to mannose-alpha-1,3-glucose-beta-1,4-glucose-P-P-polyisoprenyl with formation of a glucuronic acid-beta-mannose linkage. We examined the acceptor substrate specificity. GumK was unable to use the trisaccharide acceptor freed from the pyrophosphate lipid moiety. Replacement of the natural lipid moiety by phytanyl showed that the catalytic function could proceed with glucuronic acid transfer. These results suggest the enzyme does not show specificity for the lipidic portion of the acceptor. GumK showed diminished activity when tested with 6-O-acetyl-mannose-alpha-1,3-glucose-beta-1,4-glucose-P-P-polyisoprenyl, a putative intermediate in the synthesis of xanthan. This could indicate that acetylation of the internal mannose takes place after the formation of the GumK product. << Less