Reaction participants Show >> << Hide
- Name help_outline 4-hydroxyphenylacetate Identifier CHEBI:48999 Charge -1 Formula C8H7O3 InChIKeyhelp_outline XQXPVVBIMDBYFF-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(CC([O-])=O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 163 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3,4-dihydroxyphenylacetate Identifier CHEBI:17612 Charge -1 Formula C8H7O4 InChIKeyhelp_outline CFFZDZCDUFSOFZ-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(CC([O-])=O)cc1O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 172 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30595 | RHEA:30596 | RHEA:30597 | RHEA:30598 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases.
Thotsaporn K., Sucharitakul J., Wongratana J., Suadee C., Chaiyen P.
The genes encoding for the reductase and oxygenase components of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii were cloned and expressed in an E. coli system. The recombinant enzymes were purified and shown to have the same catalytic properties as the native enzyme. Sequence an ... >> More
The genes encoding for the reductase and oxygenase components of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii were cloned and expressed in an E. coli system. The recombinant enzymes were purified and shown to have the same catalytic properties as the native enzyme. Sequence analysis and biochemical studies indicate that the enzyme represents a novel prototype of enzyme in the two-protein component class of aromatic hydroxylases. The C2 component shows little similarity to other oxygenases in the same class, correlating with its uniquely broad flavin specificity. Analysis of the C1 reductase sequence indicates that the binding sites of flavin and NADH mainly reside in the N-terminal half while the C-terminal half may be responsible for HPA-stimulation of NADH oxidation. << Less
Biochim. Biophys. Acta 1680:60-66(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
Sucharitakul J., Chaiyen P., Entsch B., Ballou D.P.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH-(C2). We report detaile ... >> More
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH-(C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/-50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/-0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/-0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH-was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis. << Less
J. Biol. Chem. 281:17044-17053(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.
Louie T.M., Xie X.S., Xun L.
4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization ... >> More
4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization become a major metabolic event when Escherichia coli W grows on 4HPA. An important question is how FADH(2) is produced and used, as FADH(2) is unstable in the presence of free O(2). One solution is metabolic channeling by forming a transitory HpaB-HpaC complex. However, our in vivo and in vitro data failed to support the interaction. Further investigation pointed to an alternative scheme for HpaB to sequester FADH(2). The intracellular HpaB concentration was about 122 microM in 4HPA-growing cells, much higher than the total intracellular FAD concentration, and HpaB had a high affinity for FADH(2) (K(d) of 70 nM), suggesting that most FADH(2) is bound to HpaB in vivo. The HpaB-bound FADH(2) was either used to rapidly oxidize 4HPA or slowly oxidized by O(2) to FAD and H(2)O(2) in the absence of 4HPA. Thus, HpaB's high intracellular concentration, its high affinity for FADH(2), its property of protecting bound FADH(2) in the absence of 4HPA, and its ability to rapidly use FADH(2) to oxidize 4HPA when 4HPA is available can coordinate FADH(2) production and utilization by HpaB and HpaC in vivo. This type of coordination, in responding to demand, for production and utilization of labile metabolites has not been reported to date. << Less
-
Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.
Xun L., Sandvik E.R.
4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large ... >> More
4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH(2))-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH(2) in vitro, HpaB was able to use FADH(2) and O(2) for the oxidation of 4-hydroxyphenylacetate. HpaB also used chemically produced FADH(2) for 4-hydroxyphenylacetate oxidation, further demonstrating that HpaB is an FADH(2)-utilizing monooxygenase. FADH(2) generated by Fre was rapidly oxidized by O(2) to form H(2)O(2) in the absence of HpaB. When HpaB was included in the reaction mixture without 4-hydroxyphenylacetate, HpaB bound FADH(2) and transitorily protected it from rapid autoxidation by O(2). When 4-hydroxyphenylacetate was also present, HpaB effectively competed with O(2) for FADH(2) utilization, leading to 4-hydroxyphenylacetate oxidation. With sufficient amounts of HpaB in the reaction mixture, FADH(2) produced by Fre was mainly used by HpaB for the oxidation of 4-hydroxyphenylacetate. At low HpaB concentrations, most FADH(2) was autoxidized by O(2), causing uncoupling. However, the coupling of the two enzymes' activities was increased by lowering FAD concentrations in the reaction mixture. A database search revealed that HpaB had sequence similarities to several proteins and gene products involved in biosynthesis and biodegradation in both bacteria and archaea. This is the first report of an FADH(2)-utilizing monooxygenase that uses FADH(2) as a substrate rather than as a cofactor. << Less
Appl. Environ. Microbiol. 66:481-486(2000) [PubMed] [EuropePMC]
-
Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2.
Liu X., Dong Y., Li X., Ren Y., Li Y., Wang W., Wang L., Feng L.
Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH(2)-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the ant ... >> More
Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH(2)-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the anthranilate degradation gene cluster in Geobacillus thermodenitrificans NG80-2 were functionally characterized in vitro. GTNG_3159 produces FAD to be reduced by GTNG_3158 and the reduced FAD (FADH(2)) is utilized by GTNG_3160 to convert anthranilate to 3-hydroxyanthranilate (3-HAA), which is further degraded to acetyl-CoA through a meta-cleavage pathway also encoded in the gene cluster. Utilization of this pathway for the degradation of anthranilate and tryptophan by NG80-2 under physiological conditions was confirmed by real-time RT-PCR analysis of representative genes. This is believed to be the first time that the degradation pathway of anthranilate via 3-HAA has been characterized in a bacterium. This pathway is likely to play an important role in the survival of G. thermodenitrificans in the oil reservoir conditions from which strain NG80-2 was isolated. << Less
Microbiology 156:589-595(2010) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
A novel two-protein component flavoprotein hydroxylase.
Chaiyen P., Suadee C., Wilairat P.
p-Hydroxyphenylacetate (HPA) hydroxylase (HPAH) was purified from Acinetobacter baumannii and shown to be a two-protein component enzyme. The small component (C1) is the reductase enzyme with a subunit molecular mass of 32 kDa. C1 alone catalyses HPA-stimulated NADH oxidation without hydroxylation ... >> More
p-Hydroxyphenylacetate (HPA) hydroxylase (HPAH) was purified from Acinetobacter baumannii and shown to be a two-protein component enzyme. The small component (C1) is the reductase enzyme with a subunit molecular mass of 32 kDa. C1 alone catalyses HPA-stimulated NADH oxidation without hydroxylation of HPA. C1 is a flavoprotein with FMN as a native cofactor but can also bind to FAD. The large component (C2) is the hydroxylase component that hydroxylates HPA in the presence of C1. C2 is a tetrameric enzyme with a subunit molecular mass of 50 kDa and apparently contains no redox centre. FMN, FAD, or riboflavin could be used as coenzymes for hydroxylase activity with FMN showing the highest activity. Our data demonstrated that C2 alone was capable of utilizing reduced FMN to form the product 3,4-dihydroxyphenylacetate. Mixing reduced flavin with C2 also resulted in the formation of a flavin intermediate that resembled a C(4a)-substituted flavin species indicating that the reaction mechanism of the enzyme proceeded via C(4a)-substituted flavin intermediates. Based on the available evidence, we conclude that the reaction mechanism of HPAH from A. baumannii is similar to that of bacterial luciferase. The enzyme uses a luciferase-like mechanism and reduced flavin (FMNH2, FADH2, or reduced riboflavin) to catalyse the hydroxylation of aromatic compounds, which are usually catalysed by FAD-associated aromatic hydroxylases. << Less
Eur. J. Biochem. 268:5550-5561(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Crystal structure of the oxygenase component (hpaB) of the 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8.
Kim S.-H., Hisano T., Takeda K., Iwasaki W., Ebihara A., Miki K.
The 4-hydroxyphenylacetate (4HPA) 3-monooxygenase is involved in the initial step of the 4HPA degradation pathway and catalyzes 4HPA hydroxylation to 3,4-dihydroxyphenylacetate. This enzyme consists of two components, an oxygenase (HpaB) and a reductase (HpaC). To understand the structural basis o ... >> More
The 4-hydroxyphenylacetate (4HPA) 3-monooxygenase is involved in the initial step of the 4HPA degradation pathway and catalyzes 4HPA hydroxylation to 3,4-dihydroxyphenylacetate. This enzyme consists of two components, an oxygenase (HpaB) and a reductase (HpaC). To understand the structural basis of the catalytic mechanism of HpaB, crystal structures of HpaB from Thermus thermophilus HB8 were determined in three states: a ligand-free form, a binary complex with FAD, and a ternary complex with FAD and 4HPA. Structural analysis revealed that the binding and dissociation of flavin are accompanied by conformational changes of the loop between beta5 and beta6 and of the loop between beta8 and beta9, leading to preformation of part of the substrate-binding site (Ser-197 and Thr-198). The latter loop further changes its conformation upon binding of 4HPA and obstructs the active site from the bulk solvent. Arg-100 is located adjacent to the putative oxygen-binding site and may be involved in the formation and stabilization of the C4a-hydroperoxyflavin intermediate. << Less
-
Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme.
Prieto M.A., Garcia J.L.
The nucleotide sequences of the hpaB and hpaC genes encoding the 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli W ATCC 11105 have been determined. These genes appear to be part of an operon and encode two proteins of 58,781 and 18,679 Da, respectively, that are required for hydroxylase ... >> More
The nucleotide sequences of the hpaB and hpaC genes encoding the 4-hydroxyphenylacetate 3-hydroxylase from Escherichia coli W ATCC 11105 have been determined. These genes appear to be part of an operon and encode two proteins of 58,781 and 18,679 Da, respectively, that are required for hydroxylase activity. This aromatic hydroxylase is NADH-dependent and uses FAD as the redox chromophore. The largest component (HpaB) has been purified by affinity chromatography in Cibacron blue. E. coli cells that express exclusively hpaB showed only a very low hydroxylase activity that was enhanced in the presence of extracts containing the smallest protein HpaC. This behavior resembles that of the coupling protein of the 4-hydroxyphenylacetate 3-hydroxylase from Pseudomonas putida, and it might prevent the wasteful oxidation of NADH in the absence of substrate. Using a promoter-probe plasmid we have demonstrated that the hpaBC operon is expressed by a promoter inducible by 4-hydroxyphenylacetic acid. A gene, named hpaA, encoding a protein homologous to the XylS/AraC family of regulators, was identified upstream of the hydroxylase operon. The role played by HpaA in the regulation of the hpaBC operon remains to be elucidated. Since HpaB is not homologous to other aromatic hydroxylases, we suggest that the E. coli 4-hydroxyphenylacetate 3-hydroxylase is the first member of a new family of two-component aromatic hydroxylases sequenced so far. << Less