Enzymes
UniProtKB help_outline | 12 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline MurNAc-L-Ala-D-isoglutaminyl-L-Lys-(N6-tri-Gly)-D-Ala-D-Ala-diphospho-di-trans,octa-cis-undecaprenyl-GlcNAc Identifier CHEBI:62235 Charge -2 Formula C100H164N12O28P2 InChIKeyhelp_outline IHRUXPZJMOQNMD-JUFGKSSKSA-L SMILEShelp_outline C[C@@H](NC(=O)[C@@H](C)NC(=O)[C@H](CCCCNC(=O)CNC(=O)CNC(=O)C[NH3+])NC(=O)CC[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@@H]1[C@@H](NC(C)=O)[C@H](O[C@H](CO)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O)OP([O-])(=O)OP([O-])(=O)OC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(N)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
glycyl-tRNAGly
Identifier
RHEA-COMP:9683
Reactive part
help_outline
- Name help_outline 3'-glycyladenylyl group Identifier CHEBI:78522 Charge 0 Formula C12H16N6O7P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](OC(=O)C[NH3+])[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline MurNAc-L-Ala-D-isoglutaminyl-L-Lys-(N6-penta-Gly)-D-Ala-D-Ala-diphospho-di-trans,octa-cis-undecaprenyl-GlcNAc Identifier CHEBI:62236 Charge -2 Formula C104H170N14O30P2 InChIKeyhelp_outline CXIOLGPNCLFPPI-SUNKJSOLSA-L SMILEShelp_outline C[C@@H](NC(=O)[C@@H](C)NC(=O)[C@H](CCCCNC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)C[NH3+])NC(=O)CC[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@@H]1[C@@H](NC(C)=O)[C@H](O[C@H](CO)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O)OP([O-])(=O)OP([O-])(=O)OC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(N)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
tRNAGly
Identifier
RHEA-COMP:9664
Reactive part
help_outline
- Name help_outline AMP 3'-end residue Identifier CHEBI:78442 Charge -1 Formula C10H12N5O6P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 76 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30443 | RHEA:30444 | RHEA:30445 | RHEA:30446 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus.
Schneider T., Senn M.M., Berger-Baechi B., Tossi A., Sahl H.-G., Wiedemann I.
Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentagly ... >> More
Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis. << Less
Mol. Microbiol. 53:675-685(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation.
Ehlert K., Schroeder W., Labischinski H.
The femAB operon codes for two nearly identical approximately 50-kDa proteins involved in the formation of the staphylococcal pentaglycine interpeptide bridge. Sequencing and analysis of the femA region of mutants isolated by chemical mutagenesis and selection for lysostaphin resistance revealed p ... >> More
The femAB operon codes for two nearly identical approximately 50-kDa proteins involved in the formation of the staphylococcal pentaglycine interpeptide bridge. Sequencing and analysis of the femA region of mutants isolated by chemical mutagenesis and selection for lysostaphin resistance revealed point mutations leading to the expression of truncated FemA proteins. These femA mutants, although still producing an intact FemB, exhibited a phenotype identical as that described for femAB double mutants. Thus, FemA seems to be essential for the addition of glycine residues 2 and 3 only, whereas FemB is involved in the attachment of exclusively glycine residues 4 and 5. Although FemB has 39% identity with FemA, it cannot substitute for FemA. The FemA and FemB proteins seem to be highly specific in regard to the position of the glycine residues that they attach. << Less