Enzymes
| Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline dimethyl sulfoxide Identifier CHEBI:28262 (CAS: 67-68-5) help_outline Charge 0 Formula C2H6OS InChIKeyhelp_outline IAZDPXIOMUYVGZ-UHFFFAOYSA-N SMILEShelp_outline CS(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,207 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dimethyl sulfone Identifier CHEBI:9349 (Beilstein: 1737717; CAS: 67-71-0) help_outline Charge 0 Formula C2H6O2S InChIKeyhelp_outline HHVIBTZHLRERCL-UHFFFAOYSA-N SMILEShelp_outline CS(C)(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:30219 | RHEA:30220 | RHEA:30221 | RHEA:30222 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter.
Borodina E., Kelly D.P., Rainey F.A., Ward-Rainey N.L., Wood A.P.
Dimethylsulfone is a major product of the chemical oxidation in the atmosphere of the principal biogenic sulfur gas, dimethylsulfide, but no studies have been reported on the mechanisms for its microbiological degradation. Three novel strains of bacteria have been isolated from enrichment cultures ... >> More
Dimethylsulfone is a major product of the chemical oxidation in the atmosphere of the principal biogenic sulfur gas, dimethylsulfide, but no studies have been reported on the mechanisms for its microbiological degradation. Three novel strains of bacteria have been isolated from enrichment cultures provided with dimethylsulfone as the only carbon and energy substrate. These are novel facultatively methylotrophic species of Hyphonmicrobium and Arthobacter, capable of growth on a range of one-carbon substrates. Cell-free extracts contained activities of enzymes necessary for a reductive/oxidative pathway for dimethylsulfone degradation: membrane-bound-dimethylsulfone and dimethylsulfoxide reductases, dimethylsulfide monooxygenase, and methanethiol oxidase. Enzymatic evidence is also presented for the subsequent oxidation of formaldehyde by formaldehyde and formate dehydrogenases in the Hyphomicrobium strain and by a dissimilatory ribulose monophosphate cycle in the Arthrobacter strains. The strains also grew on dimethylsulfoxide and dimethylsulfide, and dimethylsulfide-grown bacteria oxidized dimethylsulfide and dimethylsulfoxide but not dimethylsulfone. Formaldehyde assimilation was effected in the Hyphomicrobium strain by the serine pathway, but enzymes of the ribulose monophosphate cycle for formaldehyde assimilation were present in the Arthrobacter strains grown on dimethylsulfone. In contrast, one of the Arthrobacter strains was shown to switch to the serine pathway during growth on methanol. Growth yields on dimethylsulfone and formaldehyde were consistent with the occurrence of the serine pathway in Hyphomicrobium strain S1 and the ribulose monophosphate cycle in Arthrobacter strain TGA, and with the proposed reductive pathway for dimethylsulfone degradation in both. << Less
-
Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov.
Borodina E., Kelly D.P., Schumann P., Rainey F.A., Ward-Rainey N.L., Wood A.P.
Novel methylotrophic Arthrobacter and Hyphomicrobium species are described. Constitutive membrane-associated dimethylsulfone- and dimethylsulfoxide-reductases were found in Arthrobacter methylotrophus strain TGA and Hyphomicrobium sulfonivorans strain S1. Enzyme activities increased during growth ... >> More
Novel methylotrophic Arthrobacter and Hyphomicrobium species are described. Constitutive membrane-associated dimethylsulfone- and dimethylsulfoxide-reductases were found in Arthrobacter methylotrophus strain TGA and Hyphomicrobium sulfonivorans strain S1. Enzyme activities increased during growth with dimethylsulfone or dimethylsulfoxide, respectively, and different ratios of activity with different growth substrates indicated that they are separate enzymes. SDS-PAGE showed some membrane-associated polypeptides to be enhanced during growth with dimethylsulfone (54 kDa in H. sulfonivorans, 21-24 kDa, 54 kDa and 80 kDa in A. methylotrophus). Western blotting with anti-dimethylsulfoxide-reductase antibody showed cross-reaction with 54- and 21-kDa polypeptides in A. methylotrophus. All strains contained rhodanese and sulfur oxygenase after growth with dimethylsulfone. Sulfite was oxidized in the Arthrobacter species by APS reductase and sulfite dehydrogenase. H. sulfonivorans oxidized sulfite with APS reductase, which is unusual for an alpha-proteobacterium. The Arthrobacter species were distinguished from each other and from other Arthrobacter and Micrococcus species by 16S rRNA gene sequence analysis. The menaquinone and fatty acid profiles of the Arthrobacter species were similar. Their peptidoglycan structures were L-Lys- L-Ser- L-Thr-L-Ala for A. sulfonivorans and L-Lys-L-Ala(2-4) for A. methylotrophus. H. sulfonivorans exhibited gross morphology typical for Hyphomicrobium, but possessed helically twisted prosthecae. 16S rRNA gene sequence analysis showed it to be distinct from all the other Hyphomicrobium, Filomicrobium and Pedomicrobium species sequenced to date. Formal descriptions of the new species are given. << Less