Reaction participants Show >> << Hide
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cyclohexa-1,5-diene-1-carbonyl-CoA Identifier CHEBI:57374 Charge -4 Formula C28H38N7O17P3S InChIKeyhelp_outline IHXBZDHPKCDGKN-TYHXJLICSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C1=CCCC=C1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized 2[4Fe-4S]-[ferredoxin]
Identifier
RHEA-COMP:10004
Reactive part
help_outline
- Name help_outline [4Fe-4S]2+ cluster Identifier CHEBI:33722 Charge 2 Formula Fe4S4 InChIKeyhelp_outline YEAYMLBNRJYVPB-UHFFFAOYSA-N Positionhelp_outline 1 SMILEShelp_outline [S]12[Fe]3[S]4[Fe]1[S]1[Fe+]2[S]3[Fe+]41 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline [4Fe-4S]2+ cluster Identifier CHEBI:33722 Charge 2 Formula Fe4S4 InChIKeyhelp_outline YEAYMLBNRJYVPB-UHFFFAOYSA-N Positionhelp_outline 2 SMILEShelp_outline [S]12[Fe]3[S]4[Fe]1[S]1[Fe+]2[S]3[Fe+]41 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline benzoyl-CoA Identifier CHEBI:57369 Charge -4 Formula C28H36N7O17P3S InChIKeyhelp_outline VEVJTUNLALKRNO-TYHXJLICSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced 2[4Fe-4S]-[ferredoxin]
Identifier
RHEA-COMP:10002
Reactive part
help_outline
- Name help_outline [4Fe-4S]1+ cluster Identifier CHEBI:33723 Charge 1 Formula Fe4S4 InChIKeyhelp_outline ISVAEKDKOPJTJN-UHFFFAOYSA-N Positionhelp_outline 1 SMILEShelp_outline [S]12[Fe]3[S]4[Fe]1[S]1[Fe]2[S]3[Fe+]41 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline [4Fe-4S]1+ cluster Identifier CHEBI:33723 Charge 1 Formula Fe4S4 InChIKeyhelp_outline ISVAEKDKOPJTJN-UHFFFAOYSA-N Positionhelp_outline 2 SMILEShelp_outline [S]12[Fe]3[S]4[Fe]1[S]1[Fe]2[S]3[Fe+]41 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30199 | RHEA:30200 | RHEA:30201 | RHEA:30202 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Reversible biological Birch reduction at an extremely low redox potential.
Kung J.W., Baumann S., von Bergen M., Muller M., Hagedoorn P.L., Hagen W.R., Boll M.
The Birch reduction of aromatic rings to cyclohexadiene compounds is widely used in chemical synthesis and requires solvated electrons, the most potent reductants known in organic chemistry. Benzoyl-coenzyme A (CoA) reductases (BCR) are key enzymes in the anaerobic bacterial degradation of aromati ... >> More
The Birch reduction of aromatic rings to cyclohexadiene compounds is widely used in chemical synthesis and requires solvated electrons, the most potent reductants known in organic chemistry. Benzoyl-coenzyme A (CoA) reductases (BCR) are key enzymes in the anaerobic bacterial degradation of aromatic compounds and catalyze an analogous reaction under physiological conditions. Class I BCRs are FeS enzymes and couple the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA) to a stoichiometric ATP hydrolysis. Here, we report on a tungsten-containing class II BCR from Geobacter metallireducens that catalyzed the fully reversible, ATP-independent dearomatization of benzoyl-CoA to dienoyl-CoA. BCR additionally catalyzed the disproportionation of dienoyl-CoA to benzoyl-CoA/monoenoyl-CoA and the four- and six-electron reduction of benzoyl-CoA in the presence of a reduced low-potential bridged 2,2'-bipyridyl redox dye. Reversible redox titration experiments in the presence of this redox dye revealed a midpoint potential of E(0)' = -622 mV for the benzoyl-CoA/dienoyl-CoA couple, which is far below the values of other known reversible substrate/product redox couples in enzymology. This work demonstrates the efficiency of reversible metalloenzyme catalysis, which in chemical synthesis can only be achieved under essentially irreversible conditions. << Less
J Am Chem Soc 132:9850-9856(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172.
Boll M., Fuchs G.
Anoxic metabolism of many aromatic compounds proceeds via the common intermediate benzoyl-CoA. Benzoyl-CoA is dearomatized by benzoyl-CoA reductase (dearomatizing) in a two-electron reduction step, possibly yielding cyclohex-1,5-diene-1-carboxyl-CoA. This process has to overcome a high activation ... >> More
Anoxic metabolism of many aromatic compounds proceeds via the common intermediate benzoyl-CoA. Benzoyl-CoA is dearomatized by benzoyl-CoA reductase (dearomatizing) in a two-electron reduction step, possibly yielding cyclohex-1,5-diene-1-carboxyl-CoA. This process has to overcome a high activation energy and is considered a biological Birch reduction. The central, aromatic-ring-reducing enzyme was investigated for the first time in the denitrifying bacterium Thauera aromatica strain K172. A spectrophotometric assay was developed which was strictly dependent on MgATP, both with cell extract and with purified enzyme. The oxygen-sensitive new enzyme was purified 35-fold with 20% yield under anaerobic conditions in the presence of 0.25 mM dithionite. It had a native molecular mass of approximately 170 kDa and consisted of four subunits a,b,c,d of 48, 45, 38 and 32 kDa. The oligomer composition of the protein most likely is abcd. The ultraviolet/visible spectrum of the protein as isolated, but without dithionite, was characteristic for an iron-sulfur protein with an absorption maximum at 279 nm and a broad shoulder at 390 nm. The estimated molar absorption coefficient at 390 nm was 35,000 M-1 cm-1. Reduction of the enzyme by dithionite resulted in a decrease of absorbance at 390 nm, and the colour turned from greenish-brown to red-brown. The enzyme contained 10.8 +/-1.5 mol Fe and 10.5 +/-1.5 mol acid-labile sulfur/mol. Besides zinc (0.5 mol/mol protein) no other metals nor selenium could be detected in significant amounts. The enzyme preparation contained a flavin or flavin-like compound; the estimated content was 0.3 mol/mol enzyme. The enzyme reaction required MgATP and a strong reductant such as Ti(III). The reaction catalyzed is: benzoyl-CoA + 2 Ti(III) + n ATP-->non-aromatic acyl-CoA + 2 Ti(IV) + n ADP + n Pi. The estimated number n of ATP molecules hydrolyzed/two electrons transferred in benzoyl-CoA reduction is 2-4. In the absence of benzoyl-CoA the enzyme exhibited oxygen-sensitive ATPase activity. The enzyme was specific for Mg(2+)-ATP, other nucleoside triphosphates being inactive (< 1%). Mg2+ could be substituted to some extent by Mn2+, Fe2+ and less efficiently by Co2+. Benzoate was not reduced, whereas some fluoro, hydroxy, amino and methyl analogues of the activated benzoic acid were reduced, albeit at much lower rate; the products remain to be identified. The specific activity with reduced methyl viologen as the electron donor was 0.55 mumol min-1 mg-1 corresponding to a catalytic number of 1.6 s-1. The apparent Km values under the assay conditions (0.5 mM for both reduced and oxidized methyl viologen) of benzoyl-CoA and ATP were 15 microM and 0.6 mM, respectively. The enzyme was inactivated by ethylene, bipyridyl and, in higher concentrations, by acetylene. Benzoyl-CoA reductase also catalyzed the ATP-dependent two-electron reduction of hydroxylamine (Km 0.15 mM) and azide. Some of the properties of the enzyme are reminiscent of those of nitrogenase which similarly overcomes the high activation energy for dinitrogen reduction by coupling electron transfer to the hydrolysis of ATP. << Less
Eur. J. Biochem. 234:921-933(1995) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.