Enzymes
UniProtKB help_outline | 10,025 proteins |
Reaction participants Show >> << Hide
- Name help_outline dodecanoyl-CoA Identifier CHEBI:57375 Charge -4 Formula C33H54N7O17P3S InChIKeyhelp_outline YMCXGHLSVALICC-GMHMEAMDSA-J SMILEShelp_outline CCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dodecanoate Identifier CHEBI:18262 Charge -1 Formula C12H23O2 InChIKeyhelp_outline POULHZVOKOAJMA-UHFFFAOYSA-M SMILEShelp_outline C(CCCCCCCC)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30135 | RHEA:30136 | RHEA:30137 | RHEA:30138 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Human brown fat inducible thioesterase variant 2 cellular localization and catalytic function.
Chen D., Latham J., Zhao H., Bisoffi M., Farelli J., Dunaway-Mariano D.
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N ... >> More
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N-terminal region of human BFIT2 (hBFIT2) constitutes a mitochondrial location signal sequence, which undergoes mitochondrion-dependent posttranslational cleavage. The mature hBFIT2 is shown to be located in the mitochondrial matrix, whereas the paralog "cytoplasmic acetyl-CoA hydrolase" (CACH, also known as ACOT12) was found in the cytoplasm. In vitro activity analysis of full-length hBFIT2 isolated from stably transfected HEK293 cells demonstrates selective thioesterase activity directed toward long chain fatty acyl-CoA thioesters, thus distinguishing the catalytic function of BFIT2 from that of CACH. The results from a protein-lipid overlay test indicate that the hBFIT2 StarD14 domain binds phosphatidylinositol 4-phosphate. << Less
Biochemistry 51:6990-6999(2012) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs.
Hunt M.C., Rautanen A., Westin M.A.K., Svensson L.T., Alexson S.E.H.
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid ... >> More
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full-length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl-CoA and medium to long chain acyl-CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes. << Less
FASEB J. 20:1855-1864(2006) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1.
Lee L.-C., Lee Y.-L., Leu R.-J., Shaw J.-F.
Escherichia coli TAP (thioesterase I, EC 3.1.2.2) is a multifunctional enzyme with thioesterase, esterase, arylesterase, protease and lysophospholipase activities. Previous crystal structural analyses identified its essential amino acid residues as those that form a catalytic triad (Ser10-Asp154-H ... >> More
Escherichia coli TAP (thioesterase I, EC 3.1.2.2) is a multifunctional enzyme with thioesterase, esterase, arylesterase, protease and lysophospholipase activities. Previous crystal structural analyses identified its essential amino acid residues as those that form a catalytic triad (Ser10-Asp154-His157) and those involved in forming an oxyanion hole (Ser10-Gly44-Asn73). To gain an insight into the biochemical roles of each residue, site-directed mutagenesis was employed to mutate these residues to alanine, and enzyme kinetic studies were conducted using esterase, thioesterase and amino-acid-derived substrates. Of the residues, His157 is the most important, as it plays a vital role in the catalytic triad, and may also play a role in stabilizing oxyanion conformation. Ser10 also plays a very important role, although the small residual activity of the S10A variant suggests that a water molecule may act as a poor substitute. The water molecule could possibly be endowed with the nucleophilic-attacking character by His157 hydrogen-bonding. Asp154 is not as essential compared with the other two residues in the triad. It is close to the entrance of the substrate tunnel, therefore it predominantly affects substrate accessibility. Gly44 plays a role in stabilizing the oxyanion intermediate and additionally in acyl-enzyme-intermediate transformation. N73A had the highest residual enzyme activity among all the mutants, which indicates that Asn73 is not as essential as the other mutated residues. The role of Asn73 is proposed to be involved in a loop75-80 switch-move motion, which is essential for the accommodation of substrates with longer acyl-chain lengths. << Less
Biochem. J. 397:69-76(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A novel paradigm of fatty acid beta-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli.
Nie L., Ren Y., Janakiraman A., Smith S., Schulz H.
An alternative pathway of beta-oxidation for unsaturated fatty acids was studied in Escherichia coli. 9- cis,11-trans-Octadecadienoic acid (conjugated linoleic acid), a potential substrate of this pathway, was shown to support growth of E. coli in the absence of any other carbon source. The identi ... >> More
An alternative pathway of beta-oxidation for unsaturated fatty acids was studied in Escherichia coli. 9- cis,11-trans-Octadecadienoic acid (conjugated linoleic acid), a potential substrate of this pathway, was shown to support growth of E. coli in the absence of any other carbon source. The identification of 3,5-dodecadienoic acid in the growth medium revealed the partial beta-oxidation of conjugated linoleic acid to 3,5-dodecadienoyl-CoA, which was hydrolyzed to 3,5-dodecadienoic acid and released from cells. The involvement of acyl-CoA thioesterases in this process was evaluated by determining the substrate specificity of thioesterase II and comparing it with that of a novel thioesterase (thioesterase III) and by assessing mutant strains devoid of one or both of these thioesterases for growth on conjugated linoleic acid. Both thioesterases were highly active with 3,5-dodecadienoyl-CoA as substrate. A deficiency of either thioesterase decreased the growth rate of cells on conjugated linoleic acid but not on palmitic acid. The absence of both thioesterases reduced the cellular growth in a cumulative manner but did not abolish it. It is concluded that thioesterases II and III and at least one other thioesterase function in the partial degradation of conjugated linoleic acid via the thioesterase-dependent pathway of beta-oxidation, which provides all energy and carbon precursors required for the growth of E. coli. << Less
Biochemistry 47:9618-9626(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Hunt M.C., Solaas K., Kase B.F., Alexson S.E.H.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic ac ... >> More
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism. << Less
J. Biol. Chem. 277:1128-1138(2002) [PubMed] [EuropePMC]
This publication is cited by 22 other entries.
-
The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine.
O'Byrne J., Hunt M.C., Rai D.K., Saeki M., Alexson S.E.
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT ... >> More
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine. We show here that recombinant hBACAT also can hydrolyze long- and very long-chain saturated acyl-CoAs (mainly C16:0-C26:0) and by mass spectrometry verified that hBACAT also conjugates fatty acids to glycine. Tissue expression studies showed strong expression of BACAT in liver, gallbladder, and the proximal and distal intestine. However, BACAT is also expressed in a variety of tissues unrelated to bile acid formation and transport, suggesting important functions also in the regulation of intracellular levels of very long-chain fatty acids. Green fluorescent protein localization experiments in human skin fibroblasts showed that the hBACAT enzyme is mainly cytosolic. Therefore, the cytosolic BACAT enzyme may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. << Less
J. Biol. Chem. 278:34237-34244(2003) [PubMed] [EuropePMC]
This publication is cited by 17 other entries.
-
Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli.
McMahon M.D., Prather K.L.
Short-chain fatty acid (SCFA) biosynthesis is pertinent to production of biofuels, industrial compounds, and pharmaceuticals from renewable resources. To expand on Escherichia coli SCFA products, we previously implemented a coenzyme A (CoA)-dependent pathway that condenses acetyl-CoA to a diverse ... >> More
Short-chain fatty acid (SCFA) biosynthesis is pertinent to production of biofuels, industrial compounds, and pharmaceuticals from renewable resources. To expand on Escherichia coli SCFA products, we previously implemented a coenzyme A (CoA)-dependent pathway that condenses acetyl-CoA to a diverse group of short-chain fatty acyl-CoAs. To increase product titers and reduce premature pathway termination products, we conducted in vivo and in vitro analyses to understand and improve the specificity of the acyl-CoA thioesterase enzyme, which releases fatty acids from CoA. A total of 62 putative bacterial thioesterases, including 23 from the cow rumen microbiome, were inserted into a pathway that condenses acetyl-CoA to an acyl-CoA molecule derived from exogenously provided propionic or isobutyric acid. Functional screening revealed thioesterases that increase production of saturated (valerate), unsaturated (trans-2-pentenoate), and branched (4-methylvalerate) SCFAs compared to overexpression of E. coli thioesterase tesB or native expression of endogenous thioesterases. To determine if altered thioesterase acyl-CoA substrate specificity caused the increase in product titers, six of the most promising enzymes were analyzed in vitro. Biochemical assays revealed that the most productive thioesterases rely on promiscuous activity but have greater specificity for product-associated acyl-CoAs than for precursor acyl-CoAs. In this study, we introduce novel thioesterases with improved specificity for saturated, branched, and unsaturated short-chain acyl-CoAs, thereby expanding the diversity of potential fatty acid products while increasing titers of current products. The growing uncertainty associated with protein database annotations denotes this study as a model for isolating functional biochemical pathway enzymes in situations where experimental evidence of enzyme function is absent. << Less
Appl. Environ. Microbiol. 80:1042-1050(2014) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Peroxisome proliferator-induced acyl-CoA thioesterase from rat liver cytosol: molecular cloning and functional expression in Chinese hamster ovary cells.
Engberg S.T., Aoyama T., Alexson S.E.H., Hashimoto T., Svensson L.T.
We have isolated and cloned a cDNA that codes for one of the peroxisome proliferator-induced acyl-CoA thioesterases of rat liver. The deduced amino acid sequence corresponds to the major induced isoform in cytosol. Analysis and comparison of the deduced amino acid sequence with the established con ... >> More
We have isolated and cloned a cDNA that codes for one of the peroxisome proliferator-induced acyl-CoA thioesterases of rat liver. The deduced amino acid sequence corresponds to the major induced isoform in cytosol. Analysis and comparison of the deduced amino acid sequence with the established consensus sequences suggested that this enzyme represents a novel kind of esterase with an incomplete lipase serine active site motif. Analyses of mRNA and its expression indicated that the enzyme is significantly expressed in liver only after peroxisome proliferator treatment, but isoenzymes are constitutively expressed at high levels in testis and brain. The reported cDNA sequence is highly homologous to the recently cloned brain acyl-CoA thioesterase [Broustas, Larkins, Uhler and Hajra (1996) J. Biol. Chem. 271, 10470-10476], but subtle differences throughout the sequence, and distinct differences close to the resulting C-termini, suggest that they are different enzymes, regulated in different manners. A full-length cDNA clone was expressed in Chinese hamster ovary cells and the expressed enzyme was characterized. The palmitoyl-CoA hydrolysing activity (Vmax) was induced approx. 9-fold to 1 micromol/min per mg of cell protein, which was estimated to correspond to a specific activity of 250 micromol/min per mg of cDNA-expressed enzyme. Both the specific activity and the acyl-CoA chain length specificity were very similar to those of the purified rat liver enzyme. << Less
Biochem. J. 323:525-531(1997) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through beta-oxidation of oleic acid in Escherichia coli.
Seto Y., Kang J., Ming L., Habu N., Nihei K., Ueda S., Maeda I.
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid ... >> More
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid production from oleic acid through β-oxidation were examined. Kinetic analyses using β-oxidation intermediates showed that hydrolyses of C4-acyl substrates are more efficient by PTE1 than by TesB. Deletion of tesB in E. coli decreased 3-hydroxybutyric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, and hexanoic acid in medium after cultivation with oleic acid as a sole carbon source. Hexanoic acid concentration was much lower than those of 3-hydroxyacids. In genetic complementation of tesB deletion, use of PTE1, instead of tesB, affected proportions of the 3-hydroxyalkanoic acids. Proportion of 3-hydroxybutyric acid was higher in a PTE1-complemented strain than in a tesB-complemented strain, while proportions of 3-hydroxyhexanoic acid and 3-hydroxyoctanoic acid markedly increased in the tesB-complemented strain. Proportion of 3-hydroxyoctanoic acid did not significantly increase in the PTE1-complemented strain. These data indicate possibilities of 3-hydroxyalkanoic acid production from oleic acid through β-oxidation and customization of their chain-length proportions by genetic replacement of tesB with a gene encoding acyl-CoA thioesterase with a different kinetic property. << Less
J. Biosci. Bioeng. 110:392-396(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Purification and properties of long-chain acyl-CoA hydrolases from the liver cytosol of rats treated with peroxisome proliferator.
Yamada J., Matsumoto I., Furihata T., Sakuma M., Suga T.
Two long-chain acyl-CoA hydrolases, referred to as ACH1 and ACH2, were purified from the liver cytosol of rats fed a diet containing di(2-ethylhexyl)phthalate, a peroxisome proliferator. The molecular mass of ACH1 was estimated to be 73 kDa by gel filtration, and that of the subunits, 36 kDa by so ... >> More
Two long-chain acyl-CoA hydrolases, referred to as ACH1 and ACH2, were purified from the liver cytosol of rats fed a diet containing di(2-ethylhexyl)phthalate, a peroxisome proliferator. The molecular mass of ACH1 was estimated to be 73 kDa by gel filtration, and that of the subunits, 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The corresponding values of ACH2 were 42 and 43 kDa, respectively. Both enzymes were active toward fatty acyl-CoAs with chain-lengths of C12-16, but ACH1 had relatively broad specificity as acyl-CoAs with C8-18 were good substrates. A marked difference in their catalytic properties was found in the maximal velocity; for palmitoyl-CoA, 553 and 4.23 mumol/min/mg with Km values of 5.9 and 5.4 microM for ACH1 and ACH2, respectively. ACH2 underwent severe substrate inhibition with high concentrations of long-chain acyl-CoAs, whereas ACH1 did not. Examination with various reagents including divalent cations, sulfhydryl-blocking reagent, nucleotides, and hypolipidemic drugs, characterized ACH1 and ACH2 with several properties distinct from those of mitochondrial and microsomal hydrolases. ACH1 and ACH2 were also discernible in that the former, but not the latter, was inhibited by ATP. In the liver cytosol of rats treated with di(2-ethylhexyl)phthalate, about 90% of palmitoyl-CoA hydrolase activity was titrated with anti-ACH1 and anti-ACH2 antibodies. Immunoblot analysis suggested the presence of the enzymes also in extrahepatic tissues, especially in the brain and testis (ACH1), and in the heart and kidney (ACH2). << Less
Arch. Biochem. Biophys. 308:118-125(1994) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved.
Ofman R., el Mrabet L., Dacremont G., Spijer D., Wanders R.J.
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic ... >> More
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH. The latter pathway can only be operational if peroxisomes contain 4,8-dimethylnonanoyl-CoA thioesterase activity. In this paper we show that rat liver peroxisomes indeed contain 4,8-dimethylnonanoyl-CoA thioesterase activity. We have partially purified the enzyme involved from peroxisomes and identified the protein as the rat ortholog of a known human thioesterase using MALDI-TOF mass spectrometry in combination with the rat EST database. Heterologous expression studies in Escherichia coli established that the enzyme hydrolyzes not only DMN-CoA but also other branched-chain acyl-CoAs as well as straight-chain acyl-CoA-esters. Our data provide convincing evidence for the existence of the second pathway of acyl-CoA transport from peroxisomes to mitochondria by hydrolysis of the CoA-ester in peroxisomes followed by transport of the free acid to mitochondria, reactivation to its CoA-ester, and oxidation to CO(2) and H(2)O. (c)2002 Elsevier Science. << Less
Biochem. Biophys. Res. Commun. 290:629-634(2002) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
The Akt C-terminal modulator protein is an acyl-CoA thioesterase of the Hotdog-Fold family.
Zhao H., Martin B.M., Bisoffi M., Dunaway-Mariano D.
Herein, we report on an in vitro kinetic activity analysis that demonstrates that the protein known as the Akt C-terminal modulator protein is a broad-range, high-activity acyl-CoA thioesterase. In vitro tests of possible activity regulation by product inhibition or by Akt1 binding gave negative r ... >> More
Herein, we report on an in vitro kinetic activity analysis that demonstrates that the protein known as the Akt C-terminal modulator protein is a broad-range, high-activity acyl-CoA thioesterase. In vitro tests of possible activity regulation by product inhibition or by Akt1 binding gave negative results. Truncation mutants confined the thioesterase activity to the C-terminal domain, consistent with our threading model. The N-terminal domain of unknown fold and function was found to contribute to solubility. << Less
Biochemistry 48:5507-5509(2009) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Roles of Ser101, Asp236, and His237 in catalysis of thioesterase II and of the C-terminal region of the enzyme in its interaction with fatty acid synthase.
Tai M.H., Chirala S.S., Wakil S.J.
Thioesterase II (TE II), present in specialized tissues, catalyzes the chain termination and release of medium-chain fatty acids from fatty acid synthase [FAS; acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85]. We have exp ... >> More
Thioesterase II (TE II), present in specialized tissues, catalyzes the chain termination and release of medium-chain fatty acids from fatty acid synthase [FAS; acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85]. We have expressed rat mammary gland TE II in Escherichia coli and created several site-directed mutants. Replacing both Ser101 and His237 with Ala yielded inactive proteins, suggesting that these residues are part of the catalytic triad as in FAS thioesterase (TE I). Mutating the conserved Asp236 or modifying it with Woodward's reagent K caused partial loss (40%) of TE II activity and reduced reactivity of Ser101 and His237 toward their specific inhibitors, phenylmethylsulfonyl fluoride and diethylpyrocarbonate, respectively. These results suggested that Asp236 enhances, but is not essential for, the reactivity of Ser101 and His237. Mutation analyses revealed that, at the C terminus, Leu262 is critical for TE II to interact with FAS. Hydrophobic interactions seem to play a role, since the interaction of TE II with FAS is enhanced by polyethylene glycol but reduced by salt. The Ser101 and His237 mutants and a synthetic C-terminal decapeptide did not compete in the interaction. These results suggest that a TE II-acyl FAS complex forms first, which then is stabilized by the interaction of the hydrophobic C terminus of TE II with FAS, leading ultimately to hydrolysis and release of fatty acid. << Less
Proc. Natl. Acad. Sci. U.S.A. 90:1852-1856(1993) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Identification of a type III thioesterase reveals the function of an operon crucial for Mtb virulence.
Wang F., Langley R., Gulten G., Wang L., Sacchettini J.C.
Rv0098 is part of an operon, Rv0096-Rv0101, from Mycobacterium tuberculosis (Mtb) that is essential for Mtb's survival in mouse macrophages. This operon also contains an acyl carrier protein and one of the only two nonribosomal peptide synthases in Mtb. Rv0098 is annotated in the genome as a hypot ... >> More
Rv0098 is part of an operon, Rv0096-Rv0101, from Mycobacterium tuberculosis (Mtb) that is essential for Mtb's survival in mouse macrophages. This operon also contains an acyl carrier protein and one of the only two nonribosomal peptide synthases in Mtb. Rv0098 is annotated in the genome as a hypothetical protein and was proposed to be an acyl-coenzyme A (CoA) dehydratase. The structure of Rv0098, together with subsequent biochemical analysis, indicated that Rv0098 is a long-chain fatty acyl-CoA thioesterase (FcoT). However, FcoT lacks a general base or a nucleophile that is always found in the catalytic site of type II and type I thioesterases, respectively. The active site of Mtb FcoT reveals the structural basis for its substrate specificity for long-chain acyl-CoA and allows us to propose a catalytic mechanism for the enzyme. The characterization of Mtb FcoT provides a putative function of this operon that is crucial for Mtb pathogenicity. << Less
Chem. Biol. 14:543-551(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.