Reaction participants Show >> << Hide
- Name help_outline betaine aldehyde Identifier CHEBI:15710 (CAS: 7418-61-3) help_outline Charge 1 Formula C5H12NO InChIKeyhelp_outline SXKNCCSPZDCRFD-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)C[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine betaine Identifier CHEBI:17750 (CAS: 107-43-7) help_outline Charge 0 Formula C5H11NO2 InChIKeyhelp_outline KWIUHFFTVRNATP-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30067 | RHEA:30068 | RHEA:30069 | RHEA:30070 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline |
Publications
-
Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli.
Falkenberg P., Strom A.R.
The osmoregulatory NAD-dependent betaine aldehyde dehydrogenase (betaine aldehyde:NAD oxidoreductase, EC 1.2.1.8), of Escherichia coli, was purified to apparent homogeneity from an over-producing strain carrying the structural gene for the enzyme (betB) on the plasmid vector pBR322. Purification w ... >> More
The osmoregulatory NAD-dependent betaine aldehyde dehydrogenase (betaine aldehyde:NAD oxidoreductase, EC 1.2.1.8), of Escherichia coli, was purified to apparent homogeneity from an over-producing strain carrying the structural gene for the enzyme (betB) on the plasmid vector pBR322. Purification was achieved by ammonium sulfate fractionation of disrupted cells, followed by affinity chromatography on 5'-AMP Sepharose, gel-filtration and ion-exchange chromatography. The amino acid composition was determined. The dehydrogenase was found to be a tetramer with identical 55 kDa subunits. Both NAD and NADP could be used as cofactor for the dehydrogenase, but NAD was preferred. The dehydrogenase was highly specific for betaine aldehyde. None of the analogs tested functioned as a substrate, but several inhibited the enzyme competitively. The enzyme was not activated by salts at concentrations encountered during osmotic upshock, but it was salt tolerant, retaining 50% of maximal activity at 1.2 M K+. It is inferred that salt tolerance is an essential property for an enzyme participating in the cellular synthesis of an osmoprotectant. << Less
Biochim. Biophys. Acta 1034:253-259(1990) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
Velasco-Garcia R., Gonzalez-Segura L., Munoz-Clares R.A.
Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growin ... >> More
Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD(+)- and NADP(+)-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)(+) and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)(+) binds first and NAD(P)H leaves last, particularly in the NADP(+)-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP(+)-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose. << Less
-
Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli.
Landfald B., Strom A.R.
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osm ... >> More
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osmoprotectant only under aerobic conditions, whereas glycine betaine aldehyde and glycine betaine function both aerobically and anaerobically. No endogenous glycine betaine accumulation was detectable in osmotically stressed cells grown in the absence of the osmoprotectant itself or the precursors. A membrane-bound, O2-dependent, and electron transfer-linked dehydrogenase was found which oxidized choline to glycine betaine aldehyde and aldehyde to glycine betaine at nearly the same rate. It displayed Michaelis-Menten kinetics; the apparent Km values for choline and glycine betaine aldehyde were 1.5 and 1.6 mM, respectively. Also, a soluble, NAD-dependent dehydrogenase oxidized glycine betaine aldehyde. It displayed Michaelis-Menten kinetics; the apparent Km values for the aldehyde, NAD, and NADP were 0.13, 0.06, and 0.5 mM, respectively. The choline-glycine betaine pathway was osmotically regulated, i.e., full enzymic activities were found only in cells grown aerobically in choline-containing medium at an elevated osmotic strength. Chloramphenicol inhibited the formation of the pathway in osmotically stressed cells. << Less
J. Bacteriol. 165:849-855(1986) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.