Reaction participants Show >> << Hide
- Name help_outline fumarate Identifier CHEBI:29806 (Beilstein: 1861276; CAS: 142-42-7) help_outline Charge -2 Formula C4H2O4 InChIKeyhelp_outline VZCYOOQTPOCHFL-OWOJBTEDSA-L SMILEShelp_outline [O-]C(=O)\C=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-aspartate Identifier CHEBI:29991 Charge -1 Formula C4H6NO4 InChIKeyhelp_outline CKLJMWTZIZZHCS-REOHCLBHSA-M SMILEShelp_outline [NH3+][C@@H](CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 74 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline iminosuccinate Identifier CHEBI:77875 Charge -1 Formula C4H4NO4 InChIKeyhelp_outline NMUOATVLLQEYHI-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)CC(=[NH2+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:30043 | RHEA:30044 | RHEA:30045 | RHEA:30046 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis.
Bossi R.T., Negri A., Tedeschi G., Mattevi A.
L-Aspartate oxidase (Laspo) catalyzes the conversion of L-Asp to iminoaspartate, the first step in the de novo biosynthesis of NAD(+). This bacterial pathway represents a potential drug target since it is absent in mammals. The Laspo R386L mutant was crystallized in the FAD-bound catalytically com ... >> More
L-Aspartate oxidase (Laspo) catalyzes the conversion of L-Asp to iminoaspartate, the first step in the de novo biosynthesis of NAD(+). This bacterial pathway represents a potential drug target since it is absent in mammals. The Laspo R386L mutant was crystallized in the FAD-bound catalytically competent form and its three-dimensional structure determined at 2.5 A resolution in both the native state and in complex with succinate. Comparison of the R386L holoprotein with the wild-type apoenzyme [Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A., and Ronchi, S. (1999) Structure 7, 745-756] reveals that cofactor incorporation leads to the ordering of two polypeptide segments (residues 44-53 and 104-141) and to a 27 degree rotation of the capping domain. This motion results in the formation of the active site cavity, located at the interface between the capping domain and the FAD-binding domain. The structure of the succinate complex indicates that the cavity surface is decorated by two clusters of H-bond donors that anchor the ligand carboxylates. Moreover, Glu121, which is strictly conserved among Laspo sequences, is positioned to interact with the L-Asp alpha-amino group. The architecture of the active site of the Laspo holoenzyme is remarkably similar to that of respiratory fumarate reductases, providing strong evidence for a common mechanism of catalysis in Laspo and flavoproteins of the succinate dehydrogenase/fumarate reductase family. This implies that Laspo is mechanistically distinct from other flavin-dependent amino acid oxidases, such as the prototypical D-amino acid oxidase. << Less
Biochemistry 41:3018-3024(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mechanistic characterization of Escherichia coli L-aspartate oxidase from kinetic isotope effects.
Chow C., Hegde S., Blanchard J.S.
l-Aspartate oxidase, encoded by the nadB gene, is the first enzyme in the de novo synthesis of NAD<sup>+</sup> in bacteria. This FAD-dependent enzyme catalyzes the oxidation of l-aspartate to generate iminoaspartate and reduced flavin. Distinct from most amino acid oxidases, it can use either mole ... >> More
l-Aspartate oxidase, encoded by the nadB gene, is the first enzyme in the de novo synthesis of NAD<sup>+</sup> in bacteria. This FAD-dependent enzyme catalyzes the oxidation of l-aspartate to generate iminoaspartate and reduced flavin. Distinct from most amino acid oxidases, it can use either molecular oxygen or fumarate to reoxidize the reduced enzyme. Sequence alignments and the three-dimensional crystal structure have revealed that the overall fold and catalytic residues of NadB closely resemble those of the succinate dehydrogenase/fumarate reductase family rather than those of the prototypical d-amino acid oxidases. This suggests that the enzyme can catalyze amino acid oxidation via typical amino acid oxidase chemistry, involving the removal of protons from the α-amino group and the transfer of the hydride from C2, or potentially deprotonation at C3 followed by transfer of the hydride from C2, similar to chemistry occurring during succinate oxidation. We have investigated this potential mechanistic ambiguity using a combination of primary, solvent, and multiple deuterium kinetic isotope effects in steady state experiments. Our results indicate that the chemistry is similar to that of typical amino acid oxidases in which the transfer of the hydride from C2 of l-aspartate to FAD is rate-limiting and occurs in a concerted manner with respect to deprotonation of the α-amine. Together with previous kinetic and structural data, we propose that NadB has structurally evolved from succinate dehydrogenase/fumarate reductase-type enzymes to gain the new functionality of oxidizing amino acids while retaining the ability to reduce fumarate. << Less
Biochemistry 56:4044-4052(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Two sources of endogenous hydrogen peroxide in Escherichia coli.
Korshunov S., Imlay J.A.
Mechanisms of hydrogen peroxide generation in Escherichia coli were investigated using a strain lacking scavenging enzymes. Surprisingly, the deletion of many abundant flavoenzymes that are known to autoxidize in vitro did not substantially lessen overall H(2)O(2) formation. However, H(2)O(2) prod ... >> More
Mechanisms of hydrogen peroxide generation in Escherichia coli were investigated using a strain lacking scavenging enzymes. Surprisingly, the deletion of many abundant flavoenzymes that are known to autoxidize in vitro did not substantially lessen overall H(2)O(2) formation. However, H(2)O(2) production diminished by 25-30% when NadB turnover was eliminated. The flavin-dependent desaturating dehydrogenase, NadB uses fumarate as an electron acceptor in anaerobic cells. Experiments showed that aerobic NadB turnover depends upon its oxidation by molecular oxygen, with H(2)O(2) as a product. This reaction appears to be mechanistically adventitious. In contrast, most desaturating dehydrogenases are associated with the respiratory chain and deliver electrons to fumarate anaerobically or oxygen aerobically without the formation of toxic by-products. Presumably, NadB can persist as an H(2)O(2)-generating enzyme because its flux is limited. The anaerobic respiratory enzyme fumarate reductase uses a flavoprotein subunit that is homologous to NadB and accordingly forms substantial H(2)O(2) upon aeration. This tendency is substantially suppressed by cytochrome oxidase. Thus cytochrome d oxidase, which is prevalent among anaerobes, may diminish intracellular H(2)O(2) formation by the anaerobic respiratory chain, whenever these organisms encounter oxygen. These two examples reveal biochemical and physiological arrangements through which evolution has minimized the rate of intracellular oxidant formation. << Less
-
L-aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity.
Tedeschi G., Negri A., Mortarino M., Ceciliani F., Simonic T., Faotto L., Ronchi S.
L-Aspartate oxidase is a monomeric flavoprotein that catalyzes the first step in the de novo biosynthetic pathway for pyridine nucleotide formation under both aerobic and anaerobic conditions. In spite of the physiological importance of this biosynthesis in particular in facultative aerobic organi ... >> More
L-Aspartate oxidase is a monomeric flavoprotein that catalyzes the first step in the de novo biosynthetic pathway for pyridine nucleotide formation under both aerobic and anaerobic conditions. In spite of the physiological importance of this biosynthesis in particular in facultative aerobic organisms, such as Escherichia coli, little is known about the electron acceptor of reduced L-aspartate oxidase in the absence of oxygen. In this report, evidence is presented which suggests that in vitro fumarate can play such a role. L-Aspartate oxidase binds succinate and fumarate with Kd values of 0.24 mM and 0.22 mM, respectively. A competitive behaviour was observed for these two dicarboxylic acids towards iminoaspartate and sulfite ions. Photoreduction experiments suggest that fumarate and succinate bind at or close to the active site of the molecule. A new fumarate reductase activity of L-aspartate oxidase is reported using benzylviologen or L-aspartate as reductants and fumarate as oxidant. Steady-state kinetics for the oxidase and the fumarate reductase activity of L-aspartate oxidase were obtained using either fumarate or oxygen as electron acceptor and L-aspartate as electron donor. Finally, succinate was identified as the product of the L-aspartate:fumarate oxidoreductase activity using radiolabeled fumarate under anaerobic conditions. The results suggest that fumarate can be a valuable alternative to oxygen as a substrate for L-aspartate oxidase. << Less
Eur. J. Biochem. 239:427-433(1996) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.