Enzymes
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 794 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methanesulfonate Identifier CHEBI:25224 Charge -1 Formula CH3O3S InChIKeyhelp_outline AFVFQIVMOAPDHO-UHFFFAOYSA-M SMILEShelp_outline CS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 804 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (Beilstein: 1209228; CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sulfite Identifier CHEBI:17359 (CAS: 14265-45-3) help_outline Charge -2 Formula O3S InChIKeyhelp_outline LSNNMFCWUKXFEE-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 60 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29307 | RHEA:29308 | RHEA:29309 | RHEA:29310 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli.
Eichhorn E., van der Ploeg J.R., Leisinger T.
The Escherichia coli ssuEADCB gene cluster is required for the utilization of alkanesulfonates as sulfur sources, and is expressed under conditions of sulfate or cysteine starvation. The SsuD and SsuE proteins were overexpressed and characterized. SsuE was purified to homogeneity as an N-terminal ... >> More
The Escherichia coli ssuEADCB gene cluster is required for the utilization of alkanesulfonates as sulfur sources, and is expressed under conditions of sulfate or cysteine starvation. The SsuD and SsuE proteins were overexpressed and characterized. SsuE was purified to homogeneity as an N-terminal histidine-tagged fusion protein. Native SsuE was a homodimeric enzyme of M(r) 58,400, which catalyzed an NAD(P)H-dependent reduction of FMN, but it was also able to reduce FAD or riboflavin. The SsuD protein was purified to >98% purity using cation exchange, anion exchange, and hydrophobic interaction chromatography. The pure enzyme catalyzed the conversion of pentanesulfonic acid to sulfite and pentaldehyde and was able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers. SsuD catalysis was absolutely dependent on FMNH(2) and oxygen, and was maximal for SsuE/SsuD molar ratios of 2.1 to 4.2 in 10 mM Tris-HCl, pH 9.1. Native SsuD was a homotetrameric enzyme of M(r) 181,000. These results demonstrate that SsuD is a broad range FMNH(2)-dependent monooxygenase catalyzing the oxygenolytic conversion of alkanesulfonates to sulfite and the corresponding aldehydes. SsuE is the FMN reducing enzyme providing SsuD with FMNH(2). << Less
J. Biol. Chem. 274:26639-26646(1999) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa.
Kertesz M.A., Schmidt-Larbig K., Wueest T.
When Pseudomonas aeruginosa is grown with organosulfur compounds as sulfur sources, it synthesizes a set of proteins whose synthesis is repressed in the presence of sulfate, cysteine, or thiocyanate (so-called sulfate starvation-induced proteins). The gene encoding one of these proteins, PA13, was ... >> More
When Pseudomonas aeruginosa is grown with organosulfur compounds as sulfur sources, it synthesizes a set of proteins whose synthesis is repressed in the presence of sulfate, cysteine, or thiocyanate (so-called sulfate starvation-induced proteins). The gene encoding one of these proteins, PA13, was isolated from a cosmid library of P. aeruginosa PAO1 and sequenced. It encoded a 381-amino-acid protein that was related to several reduced flavin mononucleotide (FMNH2)-dependent monooxygenases, and it was the second in an operon of three genes, which we have named msuEDC. The MsuD protein catalyzed the desulfonation of alkanesulfonates, requiring oxygen and FMNH2 for the reaction, and showed highest activity with methanesulfonate. MsuE was an NADH-dependent flavin mononucleotide (FMN) reductase, which provided reduced FMN for the MsuD enzyme. Expression of the msu operon was analyzed with a transcriptional msuD::xylE fusion and was found to be repressed in the presence of sulfate, sulfite, sulfide, or cysteine and derepressed during growth with methionine or alkanesulfonates. Growth with methanesulfonate required an intact cysB gene, and the msu operon is therefore part of the cys regulon, since sulfite utilization was found to be CysB independent in this species. Measurements of msuD::xylE expression in cysN and cysI genetic backgrounds showed that sulfate, sulfite, and sulfide or cysteine play independent roles in negatively regulating msu expression, and sulfonate utilization therefore appears to be tightly regulated. << Less
-
Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1.
Endoh T., Kasuga K., Horinouchi M., Yoshida T., Habe H., Nojiri H., Omori T.
Microbial dimethyl sulfide (DMS) conversion is thought to be involved in the global sulfur cycle. We isolated Pseudomonas putida strain DS1 from soil as a bacterium utilizing DMS as a sole sulfur source, and tried to elucidate the DMS conversion mechanism of strain DS1 at biochemical and genetic l ... >> More
Microbial dimethyl sulfide (DMS) conversion is thought to be involved in the global sulfur cycle. We isolated Pseudomonas putida strain DS1 from soil as a bacterium utilizing DMS as a sole sulfur source, and tried to elucidate the DMS conversion mechanism of strain DS1 at biochemical and genetic level. Strain DS1 oxidized DMS to dimethyl sulfone (DMSO(2)) via dimethyl sulfoxide, whereas the oxidation was repressed in the presence of sulfate, suggesting that a sulfate starvation response is involved in DMS utilization by strain DS1. Two of the five DMS-utilization-defective mutants isolated by transposon 5 (Tn 5) mutagenesis had a Tn 5 insertion in the ssuEADCBF operon, which has been reported to encode a two-component monooxygenase system (SsuED), an ABC-type transporter (SsuABC), and a small protein (SsuF), and also to play a key role in utilization of sulfonates and sulfate esters in another bacterium, P. putida strain S-313. Disruption of ssuD and SsuD enzymatic activity demonstrated that methanesulfonate is a metabolic intermediate of DMS and desulfonated by SsuD. Disruption of ssuC or ssuF also led to a DMS-utilization-defective phenotype. Another two mutants had a defect in a gene homologous to pa2354 from P. aeruginosa PAO1, which encodes a putative transcriptional regulator, while the remaining mutant had a defect in cysM encoding O-acetylserine (thiol)-lyase B. << Less
Appl. Microbiol. Biotechnol. 62:83-91(2003) [PubMed] [EuropePMC]