Reaction participants Show >> << Hide
-
Name help_outline
a ubiquinol
Identifier
CHEBI:17976
(CAS: 56275-39-9)
help_outline
Charge
0
Formula
C9H12O4(C5H8)n
Search links
Involved in 55 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9566Polymer name: a ubiquinolPolymerization index help_outline nFormula C9H12O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,779 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline superoxide Identifier CHEBI:18421 (CAS: 11062-77-4) help_outline Charge -1 Formula O2 InChIKeyhelp_outline OUUQCZGPVNCOIJ-UHFFFAOYSA-M SMILEShelp_outline [O][O-] 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a ubiquinone
Identifier
CHEBI:16389
(CAS: 1339-63-5)
help_outline
Charge
0
Formula
C9H10O4(C5H8)n
Search links
Involved in 51 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9565Polymer name: a ubiquinonePolymerization index help_outline nFormula C9H10O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29171 | RHEA:29172 | RHEA:29173 | RHEA:29174 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Scavenging of superoxide by a membrane-bound superoxide oxidase.
Lundgren C.A.K., Sjostrand D., Biner O., Bennett M., Rudling A., Johansson A.L., Brzezinski P., Carlsson J., von Ballmoos C., Hogbom M.
Superoxide is a reactive oxygen species produced during aerobic metabolism in mitochondria and prokaryotes. It causes damage to lipids, proteins and DNA and is implicated in cancer, cardiovascular disease, neurodegenerative disorders and aging. As protection, cells express soluble superoxide dismu ... >> More
Superoxide is a reactive oxygen species produced during aerobic metabolism in mitochondria and prokaryotes. It causes damage to lipids, proteins and DNA and is implicated in cancer, cardiovascular disease, neurodegenerative disorders and aging. As protection, cells express soluble superoxide dismutases, disproportionating superoxide to oxygen and hydrogen peroxide. Here, we describe a membrane-bound enzyme that directly oxidizes superoxide and funnels the sequestered electrons to ubiquinone in a diffusion-limited reaction. Experiments in proteoliposomes and inverted membranes show that the protein is capable of efficiently quenching superoxide generated at the membrane in vitro. The 2.0 Å crystal structure shows an integral membrane di-heme cytochrome b poised for electron transfer from the P-side and proton uptake from the N-side. This suggests that the reaction is electrogenic and contributes to the membrane potential while also conserving energy by reducing the quinone pool. Based on this enzymatic activity, we propose that the enzyme family be denoted superoxide oxidase (SOO). << Less
-
Purification and properties of a diheme cytochrome b561 of the Escherichia coli respiratory chain.
Murakami H., Kita K., Anraku Y.
A new b-type cytochrome, cytochrome b561 (Murakami, H., Kita, K., Oya, H., and Anraku, Y. (1984) Mol. Gen. Genet. 196, 1-5) was purified to near homogeneity from the cytochrome b561-amplified Escherichia coli K12 strain HM204/pAM5029. The purified cytochrome b561 was a single polypeptide with a mo ... >> More
A new b-type cytochrome, cytochrome b561 (Murakami, H., Kita, K., Oya, H., and Anraku, Y. (1984) Mol. Gen. Genet. 196, 1-5) was purified to near homogeneity from the cytochrome b561-amplified Escherichia coli K12 strain HM204/pAM5029. The purified cytochrome b561 was a single polypeptide with a molecular weight of 18,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point was determined to be 9.6. The difference spectrum of the cytochrome at 77 K shows a major alpha-absorption peak at 561 nm and a minor peak at 555 nm. The absolute spectrum at room temperature of the oxidized form of the cytochrome had an absorption peak at 414 nm, and that of the reduced form had peaks at 562, 530, and 428 nm. The oxidation-reduction potential of the cytochrome was estimated to be +20 mV. The cytochrome contained 91.2 nmol of heme/mg of protein, showing that it was a cytoplasmic membrane-bound, b-type diheme cytochrome. << Less
-
Structural and biochemical evidence for an enzymatic quinone redox cycle in Escherichia coli: identification of a novel quinol monooxygenase.
Adams M.A., Jia Z.
Naturally synthesized quinones perform a variety of important cellular functions. Escherichia coli produce both ubiquinone and menaquinone, which are involved in electron transport. However, semiquinone intermediates produced during the one-electron reduction of these compounds, as well as through ... >> More
Naturally synthesized quinones perform a variety of important cellular functions. Escherichia coli produce both ubiquinone and menaquinone, which are involved in electron transport. However, semiquinone intermediates produced during the one-electron reduction of these compounds, as well as through auto-oxidation of the hydroxyquinone product, generate reactive oxygen species that stress the cell. Here, we present the crystal structure of YgiN, a protein of hitherto unknown function. The three-dimensional fold of YgiN is similar to that of ActVA-Orf6 monooxygenase, which acts on hydroxyquinone substrates. YgiN shares a promoter with "modulator of drug activity B," a protein with activity similar to that of mammalian DT-diaphorase capable of reducing mendione. YgiN was able to reoxidize menadiol, the product of the "modulator of drug activity B" (MdaB) enzymatic reaction. We therefore refer to YgiN as quinol monooxygenase. Modulator of drug activity B is reported to be involved in the protection of cells from reactive oxygen species formed during single electron oxidation and reduction reactions. The enzymatic activities, together with the structural characterization of YgiN, lend evidence to the possible existence of a novel quinone redox cycle in E. coli. << Less
J. Biol. Chem. 280:8358-8363(2005) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Cloning of cybB, the gene for cytochrome b561 of Escherichia coli K12.
Murakami H., Kita K., Anraku Y.
A 37 kb fragment of DNA from an F-prime factor, F100-12, which showed a gene dosage effect on b-type cytochromes, was cloned with a cosmid vector, pHC79. Gel filtration of cytochromes and product analysis of the hybrid plasmids indicated that this fragment contained cybB, the structural gene for c ... >> More
A 37 kb fragment of DNA from an F-prime factor, F100-12, which showed a gene dosage effect on b-type cytochromes, was cloned with a cosmid vector, pHC79. Gel filtration of cytochromes and product analysis of the hybrid plasmids indicated that this fragment contained cybB, the structural gene for cytochrome b561. A chromosomal DNA fragment carrying the cybB gene was cloned by the plaque hybridization technique with Charon 4A as a vector. The gene was subcloned into pBR322 and was located in a 1.3 kb DNA fragment. It was concluded that the cybB gene is located on the chromosome of Escherichia coli K12. << Less