Enzymes
UniProtKB help_outline | 14,660 proteins |
Reaction participants Show >> << Hide
-
Name help_outline
a ubiquinone
Identifier
CHEBI:16389
(CAS: 1339-63-5)
help_outline
Charge
0
Formula
C9H10O4(C5H8)n
Search links
Involved in 49 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9565Polymer name: a ubiquinonePolymerization index help_outline nFormula C9H10O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a ubiquinol
Identifier
CHEBI:17976
(CAS: 56275-39-9)
help_outline
Charge
0
Formula
C9H12O4(C5H8)n
Search links
Involved in 55 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9566Polymer name: a ubiquinolPolymerization index help_outline nFormula C9H12O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29091 | RHEA:29092 | RHEA:29093 | RHEA:29094 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications.
Wikstrom M., Hummer G.
Complex I (NADH-ubiquinone oxidoreductase) in the respiratory chain of mitochondria and several bacteria functions as a redox-driven proton pump that contributes to the generation of the protonmotive force across the inner mitochondrial or bacterial membrane and thus to the aerobic synthesis of AT ... >> More
Complex I (NADH-ubiquinone oxidoreductase) in the respiratory chain of mitochondria and several bacteria functions as a redox-driven proton pump that contributes to the generation of the protonmotive force across the inner mitochondrial or bacterial membrane and thus to the aerobic synthesis of ATP. The stoichiometry of proton translocation is thought to be 4 H(+) per NADH oxidized (2 e(-)). Here we show that a H(+)/2 e(-) ratio of 3 appears more likely on the basis of the recently determined H(+)/ATP ratio of the mitochondrial F(1)F(o)-ATP synthase of animal mitochondria and of a set of carefully determined ATP/2 e(-) ratios for different segments of the mitochondrial respiratory chain. This lower H(+)/2 e(-) ratio of 3 is independently supported by thermodynamic analyses of experiments with both mitochondria and submitochondrial particles. A reduced H(+)/2 e(-) stoichiometry of 3 has important mechanistic implications for this proton pump. In a rough mechanistic model, we suggest a concerted proton translocation mechanism in the three homologous and tightly packed antiporter-like subunits L, M, and N of the proton-translocating membrane domain of complex I. << Less
Proc Natl Acad Sci U S A 109:4431-4436(2012) [PubMed] [EuropePMC]
-
Complex I of Rhodobacter capsulatus and its role in reverted electron transport.
Herter S.M., Kortluke C.M., Drews G.
The activities of NAD+-photoreduction and NADH/decyl-ubiquinone reductase in membrane preparations of Rhodobacter capsulatus changed to the same extent under different conditions. These results indicated that NADH:ubiquinone oxidoreductase (complex I) catalyzes the electron transport in the downhi ... >> More
The activities of NAD+-photoreduction and NADH/decyl-ubiquinone reductase in membrane preparations of Rhodobacter capsulatus changed to the same extent under different conditions. These results indicated that NADH:ubiquinone oxidoreductase (complex I) catalyzes the electron transport in the downhill direction (respiratory chain) and in the uphill direction (reverted electron flow). This conclusion was confirmed by the characterization of a complex-I-deficient mutant of R. capsulatus. The mutant was not able to reduce NAD+ in the light. Since this mutant was not able to grow photoautotrophically, we concluded that complex I is the enzyme that catalyzes the reverted electron flow to NAD+ to provide reduction equivalents for CO2 fixation. Complex I is not essential for the reverted electron flow to nitrogenase since the mutant grew under nitrogen-fixing conditions. As shown by immunological means, NuoE, a subunit of complex I from R. capsulatus having an extended C-terminus, was modified depending on the nitrogen source present in the growth medium. When the organism used N2 instead of NH4+, a smaller NuoE polypeptide was synthesized. The complex-I-deficient mutant was not able to modify NuoE. The function of the modification is discussed. << Less
-
Functional modules and structural basis of conformational coupling in mitochondrial complex I.
Hunte C., Zickermann V., Brandt U.
Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis ... >> More
Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis of mitochondrial complex I. The positions of all iron-sulfur clusters relative to the membrane arm were determined in the complete enzyme complex. The ubiquinone reduction site resides close to 30 angstroms above the membrane domain. The arrangement of functional modules suggests conformational coupling of redox chemistry with proton pumping and essentially excludes direct mechanisms. We suggest that a approximately 60-angstrom-long helical transmission element is critical for transducing conformational energy to proton-pumping elements in the distal module of the membrane arm. << Less
-
Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain.
Sazanov L.A.
Complex I of respiratory chains plays a central role in cellular energy production. Mutations in its subunits lead to many human neurodegenerative diseases. Recently, a first atomic structure of the hydrophilic domain of complex I from Thermus thermophilus was determined. This domain represents a ... >> More
Complex I of respiratory chains plays a central role in cellular energy production. Mutations in its subunits lead to many human neurodegenerative diseases. Recently, a first atomic structure of the hydrophilic domain of complex I from Thermus thermophilus was determined. This domain represents a catalytic core of the enzyme. It consists of eight different subunits, contains all the redox centers, and comprises more than half of the entire complex. In this review, novel mechanistic implications of the structure are discussed, and the effects of many known mutations of complex I subunits are interpreted in a structural context. << Less
Biochemistry 46:2275-2288(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The architecture of respiratory complex I.
Efremov R.G., Baradaran R., Sazanov L.A.
Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. W ... >> More
Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation. << Less
Nature 465:441-445(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.