Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline 2-hydroxy-4-oxobutane-1,2,4-tricarboxylate Identifier CHEBI:58075 Charge -3 Formula C7H5O8 InChIKeyhelp_outline RQMCNDRMPZBEOD-UHFFFAOYSA-K SMILEShelp_outline OC(CC([O-])=O)(CC(=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline oxaloacetate Identifier CHEBI:16452 (CAS: 149-63-3) help_outline Charge -2 Formula C4H2O5 InChIKeyhelp_outline KHPXUQMNIQBQEV-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 60 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28935 | RHEA:28936 | RHEA:28937 | RHEA:28938 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida.
Nogales J., Canales A., Jimenez-Barbero J., Serra B., Pingarron J.M., Garcia J.L., Diaz E.
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is widely distributed in nature, being a major phenolic pollutant and a commonly used antioxidant and building-block for drug development. We have characterized the first complete cluster (gal genes) responsible for growth in GA in a derivative of the ... >> More
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is widely distributed in nature, being a major phenolic pollutant and a commonly used antioxidant and building-block for drug development. We have characterized the first complete cluster (gal genes) responsible for growth in GA in a derivative of the model bacterium Pseudomonas putida KT2440. GalT mediates specific GA uptake and chemotaxis, and highlights the critical role of GA transport in bacterial adaptation to GA consumption. The proposed GA degradation via the central intermediate 4-oxalomesaconic acid (OMA) was revisited and all enzymes involved have been identified. Thus, GalD is the prototype of a new subfamily of isomerases that catalyses a biochemical step that remained unknown, i.e. the tautomerization of the OMAketo generated by the GalA dioxygenase to OMAenol. GalB is the founding member of a new family of zinc-containing hydratases that converts OMAenol into 4-carboxy-4-hydroxy-2-oxoadipic acid (CHA). galC encodes the aldolase catalysing CHA cleavage to pyruvic and oxaloacetic acids. The presence of homologous gal clusters outside the Pseudomonas genus sheds light on the evolution and ecology of the gal genes in GA degraders. The gal genes were used for expanding the metabolic abilities of heterologous hosts towards GA degradation, and for engineering a GA cellular biosensor. << Less
Mol. Microbiol. 79:359-374(2011) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase.
Maruyama K.
A hydrolase which catalyzes specifically the interconversion between 2-pyrone-4,6-dicarboxylate and 4-oxalmesaconate was purified about 410-fold with a 16% yield from cell-free extracts of Pseudomonas ochraceae grown with phthalate. Upon disc gel electrophoresis, the enzyme preparation gave a sing ... >> More
A hydrolase which catalyzes specifically the interconversion between 2-pyrone-4,6-dicarboxylate and 4-oxalmesaconate was purified about 410-fold with a 16% yield from cell-free extracts of Pseudomonas ochraceae grown with phthalate. Upon disc gel electrophoresis, the enzyme preparation gave a single band which was coincident with the enzyme activity. The molecular weight of the enzyme was estimated to be 31,000 by gel filtration on Sephadex G-75 and 33,000 by sodium dodecyl sulfate gel electrophoresis. The isoelectric point of the enzyme was determined to be at pH 5.49 by isoelectric focusing. The enzyme is specific for 2-pyrone-4,6-dicarboxylate, and various other lactones did not serve as substrates. The stoichiometry of 2-pyrone-4,6-dicarboxylate hydrolysis, 4-oxalmesaconate formation and proton production was approximately 1:1:1. The optimum pHs are 8.5 and 6.0 for hydrolysis and synthesis of 2-pyrone-4,6-dicarboxylate, respectively. Km values are 87 and 26 microM for 2-pyrone-4,6-dicarboxylate and 4-oxalmesaconate, respectively. At pH 8.5, the ratio of 4-oxalmesaconate to 2-pyrone-4,6-dicarboxylate at equilibrium is about 2.2. Thiol reagents such as HgCl2 and p-chloromercuribenzoate strongly inhibit the enzyme activity. << Less
J Biochem 93:557-565(1983) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Absolute configuration of a metabolite in the m-fission pathway of protocatechuate.
Ritter C.S., Chapman P.J., Dagley S.
An aldolase, which is induced in Pseudomonas testosteroni during growth with p-hydroxybenzoate, preferentially attacks the R form of 4-hydroxy-4-methyl-2-oxoglutarate, a metabolite of protocatechuate catabolism.
-
4-Hydroxy-4-methyl-2-ketoglutarate aldolase from Pseudomonas putida.
Dagley S.
Methods Enzymol 90 Pt E:272-276(1982) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae grown on phthalate.
Maruyama K.
4-Hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] has been purified to homogeneity (about 770-fold purification, yield 11.4%) from Pseudomonas ochraceae grown on phthalate. The enzyme has a molecular weight of 160,000 (gel filtration on Bio- ... >> More
4-Hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] has been purified to homogeneity (about 770-fold purification, yield 11.4%) from Pseudomonas ochraceae grown on phthalate. The enzyme has a molecular weight of 160,000 (gel filtration on Bio-Gel A-1.5m), a subunit molecular weight of 26,000 (SDS-PAGE) and an isoelectric point of 5.0 (isoelectric focusing). The enzyme requires divalent metal ions such as Mg2+, Mn2+, Co2+, Zn2+, and Cd2+ for activity. The enzyme actively cleaves 4-carboxy-4-hydroxy-2-oxoadipate, a physiological substrate of the enzyme, to give pyruvate and oxaloacetate, but shows much lower affinity for 4-hydroxy-4-methyl-2-oxoglutarate. 4-Hydroxy-2-oxoglutarate is cleaved at a low rate to pyruvate and glyoxylate. The l-isomers of the substrates are preferentially cleaved rather than the d-isomers as determined polarimetrically. The enzyme reactions are reversible: the equilibrium constants (pH 8.0, 25 C) for the HMG and HG cleavage reactions are about 0.07 and 0.03 M, respectively, whereas no equilibrium is observed with CHA due to oxaloacetate beta-decarboxylase activity associated with the enzyme. The enzyme activity is hardly affected by thiols and thiol reagents. The non-enzymatic cleavage reaction caused by various metal ions has also been studied to examine the mechanistic similarity to the enzymatic reaction. << Less
J. Biochem. 108:327-333(1990) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase.
Tack B.F., Chapman P.J., Dagley S.
J Biol Chem 247:6444-6449(1972) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.