Enzymes
UniProtKB help_outline | 6,038 proteins |
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-tyrosine Identifier CHEBI:58315 Charge 0 Formula C9H11NO3 InChIKeyhelp_outline OUYCCCASQSFEME-QMMMGPOBSA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccc(O)cc1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 53 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28875 | RHEA:28876 | RHEA:28877 | RHEA:28878 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Functional analysis of the Erwinia herbicola tutB gene and its product.
Katayama T., Suzuki H., Koyanagi T., Kumagai H.
The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine tra ... >> More
The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon. << Less
-
Cloning of the tyrP gene and further characterization of the tyrosine-specific transport system in Escherichia coli K-12.
Wookey P.J., Pittard J., Forrest S.M., Davidson B.E.
The tyrP gene which codes for a component of the tyrosine-specific transport system of Escherichia coli has been cloned on a 2.8-kilobase insert into plasmid pBR322. Transposon mutagenesis, using Tn1000, indicates that the tyrP+ gene is at least 1.1 kilobase in length. Labeling of the tyrP protein ... >> More
The tyrP gene which codes for a component of the tyrosine-specific transport system of Escherichia coli has been cloned on a 2.8-kilobase insert into plasmid pBR322. Transposon mutagenesis, using Tn1000, indicates that the tyrP+ gene is at least 1.1 kilobase in length. Labeling of the tyrP protein in maxicells with [35S]methionine indicates an apparent molecular weight of ca. 24,500. Sedimentation analysis reveals that the tyrP protein is associated with the cell membrane and is not free in the cytoplasm or periplasm. Strains with many copies of the tyrP+ gene show an enhanced uptake of tyrosine, but the expression of the system is still modulated by tyrosine and phenylalanine in the presence of the tyrR+ regulator protein. Accumulated radioactive tyrosine is rapidly effluxed by the addition either of energy uncouplers or of excess nonradioactive tyrosine, indicating that the transport system is energized by the proton motive force and that the internal pool is readily exchangeable. The effect of increasing expression of the tyrP gene on the steady-state level of tyrosine accumulated by cells indicates that although the transport system may be dependent on the proton motive force to drive uptake, the system never reaches thermodynamic equilibrium with it. << Less