Enzymes
UniProtKB help_outline | 1,031 proteins |
Reaction participants Show >> << Hide
- Name help_outline Cd2+ Identifier CHEBI:48775 (CAS: 22537-48-0) help_outline Charge 2 Formula Cd InChIKeyhelp_outline WLZRMCYVCSSEQC-UHFFFAOYSA-N SMILEShelp_outline [Cd++] 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28739 | RHEA:28740 | RHEA:28741 | RHEA:28742 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB.
Chao Y., Fu D.
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal ... >> More
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (K(m)) of 104.9 +/-5.4 microm and 90.1 +/-3.7 microm, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H+ dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nm for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H(+) gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H+. The exchange stoichiometry of metal ion for proton is likely to be 1:1. << Less
J Biol Chem 279:12043-12050(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF).
Wei Y., Fu D.
The cation diffusion facilitators (CDF) are a ubiquitous family of metal transporters that play important roles in homeostasis of a wide range of divalent metal cations. Molecular identities of substrate-binding sites and their metal selectivity in the CDF family are thus far unknown. By using iso ... >> More
The cation diffusion facilitators (CDF) are a ubiquitous family of metal transporters that play important roles in homeostasis of a wide range of divalent metal cations. Molecular identities of substrate-binding sites and their metal selectivity in the CDF family are thus far unknown. By using isothermal titration calorimetry and stopped-flow spectrofluorometry, we directly examined metal binding to a highly conserved aspartate in the Escherichia coli CDF transporter YiiP (FieF). A D157A mutation abolished a Cd2+-binding site and impaired the corresponding Cd2+ transport. In contrast, substitution of Asp-157 with a cysteinyl coordination residue resulted in intact Cd2+ binding as well as full transport activity. A similar correlation was found for Zn2+ binding and transport, suggesting that Asp-157 is a metal coordination residue required for binding and transport of Cd2+ and Zn2+. The location of Asp-157 was mapped topologically to the hydrophobic core of transmembrane segment 5 (TM-5) where D157C was found partially accessible to thiol-specific labeling of maleimide polyethylene-oxide biotin. Binding of Zn2+ and Cd2+, but not Fe2+, Hg2+, Co2+, Ni2+, Mn2+, Ca2+, and Mg2+, protected D157C from maleimide polyethylene-oxide biotin labeling in a concentration-dependent manner. Furthermore, isothermal titration calorimetry analysis of YiiP(D157A) showed no detectable change in Fe2+ and Hg2+ calorimetric titrations, indicating that Asp-157 is not a coordination residue for Fe2+ and Hg2+ binding. Our results provided direct evidence for selective binding of Zn2+ and Cd2+ for to the highly conserved Asp-157 and defined its functional role in metal transport. << Less
-
Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP.
Wei Y., Fu D.
YiiP is a representative member of the cation diffusion facilitator (CDF) family, a class of ubiquitous metal transporters that play an essential role in metal homeostasis. Recently, a pair of Zn2+/Cd2+-selective binding sites has been localized to two highly conserved aspartyl residues (Asp157), ... >> More
YiiP is a representative member of the cation diffusion facilitator (CDF) family, a class of ubiquitous metal transporters that play an essential role in metal homeostasis. Recently, a pair of Zn2+/Cd2+-selective binding sites has been localized to two highly conserved aspartyl residues (Asp157), each in a 2-fold-symmetry-related transmembrane segment 5 (TM5) of a YiiP homodimer. Here we report the functional and structural interactions between Asp157 and yet another highly conserved Asp49 in the TM2. Calorimetric binding analysis indicated that Asp49 and Asp157 contribute to a common Cd2+ binding site in each subunit. Copper phenanthroline oxidation of YiiP(D49C), YiiP(D157C), and YiiP(D49C/D157C) yielded inter- and intra-subunit cross-links among Cys49 and Cys157, consistent with the spatial proximity of two (Asp49-Asp157) sites at the dimer interface. Hg2+ binding to YiiP(D49C) or YiiP(D49C/D157C) also yielded a Cys49-Hg2+-Cys49 biscysteinate complex across the dimer interface, further establishing the interfacial location of a (Asp49-Asp157)2 bimetal binding center. Two bound Cd2+ ions were found transported cooperatively with a sigmoidal dependence on the Cd2+ concentration (n = 1.4). The binding affinity, transport cooperativity, and rate were modestly reduced by either a D49C or D157C mutation, but greatly diminished when all the bidentate aspartate O-ligands in (Asp49-Asp157)2 were replaced by the monodentate cysteine S-ligands. The functional significance of these findings is discussed based on the unique coordination chemistry of aspartyl residues and a model for the translocation pathway of metal ions at the YiiP dimer interface. << Less