Reaction participants Show >> << Hide
- Name help_outline D-glycero-β-D-manno-heptose 1,7-bisphosphate Identifier CHEBI:60208 Charge -4 Formula C7H12O13P2 InChIKeyhelp_outline LMTGTTLGDUACSJ-QTNLNCNHSA-J SMILEShelp_outline [H][C@@]1(O[C@@H](OP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glycero-β-D-manno-heptose 1-phosphate Identifier CHEBI:61593 Charge -2 Formula C7H13O10P InChIKeyhelp_outline KMEJCSKJXSBBAN-QTNLNCNHSA-L SMILEShelp_outline [H][C@@]1(O[C@@H](OP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28518 | RHEA:28519 | RHEA:28520 | RHEA:28521 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli.
Kneidinger B., Marolda C., Graninger M., Zamyatina A., McArthur F., Kosma P., Valvano M.A., Messner P.
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the ... >> More
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS. << Less
J. Bacteriol. 184:363-369(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).
Wang L., Huang H., Nguyen H.H., Allen K.N., Mariano P.S., Dunaway-Mariano D.
D-Glycero-d-manno-heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the d-glycero-d-manno-heptose-1alpha-GDP ... >> More
D-Glycero-d-manno-heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the d-glycero-d-manno-heptose-1alpha-GDP pathway (in S-layer glycoprotein biosynthesis) and the l-glycero-d-manno-heptose-1beta-ADP pathway (in lipid A biosynthesis). Herein, we report the comparative analysis of substrate recognition in selected GmhB orthologs. The substrate specificity of the l-glycero-d-manno-heptose-1beta-ADP pathway GmhB from Escherichia coli K-12 was evaluated using hexose and heptose bisphosphates, histidinol phosphate, and common organophosphate metabolites. Only d-glycero-d-manno-heptose 1beta,7-bisphosphate (k(cat)/K(m) = 7 x 10(6) M(-1) s(-1)) and d-glycero-d-manno-heptose 1alpha,7-bisphosphate (k(cat)/K(m) = 7 x 10(4) M(-1) s(-1)) displayed physiologically significant substrate activity. (31)P NMR analysis demonstrated that E. coli GmhB selectively removes the C(7) phosphate. Steady-state kinetic inhibition studies showed that d-glycero-d-manno-heptose 1beta-phosphate (K(is) = 60 microM, and K(ii) = 150 microM) and histidinol phosphate (K(is) = 1 mM, and K(ii) = 6 mM), while not hydrolyzed, do in fact bind to E. coli GmhB, which leads to the conclusion that nonproductive binding contributes to substrate discrimination. High catalytic efficiency and a narrow substrate range are characteristic of a well-evolved metabolic enzyme, and as such, E. coli GmhB is set apart from most HAD phosphatases (which are typically inefficient and promiscuous). The specialization of the biochemical function of GmhB was examined by measuring the kinetic constants for hydrolysis of the alpha- and beta-anomers of d-glycero-d-manno-heptose 1beta,7-bisphosphate catalyzed by the GmhB orthologs of the l-glycero-d-manno-heptose 1beta-ADP pathways operative in Bordetella bronchiseptica and Mesorhizobium loti and by the GmhB of the d-glycero-d-manno-heptose 1alpha-GDP pathway operative in Bacteroides thetaiotaomicron. The results show that although each of these representatives possesses physiologically significant catalytic activity toward both anomers, each displays substantial anomeric specificity. Like E. coli GmhB, B. bronchiseptica GmhB and M. loti GmhB prefer the beta-anomer, whereas B. thetaiotaomicron GmhB is selective for the alpha-anomer. By determining the anomeric configuration of the physiological substrate (d-glycero-d-manno-heptose 1,7-bisphosphate) for each of the four GmhB orthologs, we discovered that the anomeric specificity of GmhB correlates with that of the pathway kinase. The conclusion drawn from this finding is that the evolution of the ancestor to GmhB in the HisB subfamily provided for specialization toward two distinct biochemical functions. << Less
Biochemistry 49:1072-1081(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides.
Valvano M.A., Messner P., Kosma P.
Microbiology 148:1979-1989(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.