Enzymes
UniProtKB help_outline | 5,023 proteins |
Reaction participants Show >> << Hide
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28486 | RHEA:28487 | RHEA:28488 | RHEA:28489 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum.
Grass G., Franke S., Taudte N., Nies D.H., Kucharski L.M., Maguire M.E., Rensing C.
The Escherichia coli zupT (formerly ygiE) gene encodes a cytoplasmic membrane protein (ZupT) related to members of the eukaryotic ZIP family of divalent metal ion transporters. Previously, ZupT was shown to be responsible for uptake of zinc. In this study, we show that ZupT is a divalent metal cat ... >> More
The Escherichia coli zupT (formerly ygiE) gene encodes a cytoplasmic membrane protein (ZupT) related to members of the eukaryotic ZIP family of divalent metal ion transporters. Previously, ZupT was shown to be responsible for uptake of zinc. In this study, we show that ZupT is a divalent metal cation transporter of broad substrate specificity. An E. coli strain with a disruption in all known iron uptake systems could grow in the presence of chelators only if zupT was expressed. Heterologous expression of Arabidopsis thaliana ZIP1 could also alleviate iron deficiency in this E. coli strain, as could expression of indigenous mntH or feoABC. Transport studies with intact cells showed that ZupT facilitates uptake of 55Fe2+ similarly to uptake of MntH or Feo. Other divalent cations were also taken up by ZupT, as shown using 57Co2+. Expression of zupT rendered E. coli cells hypersensitive to Co2+ and sensitive to Mn2+. ZupT did not appear to be metal regulated: expression of a Phi(zupT-lacZ) operon fusion indicated that zupT is expressed constitutively at a low level. << Less
J. Bacteriol. 187:1604-1611(2005) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis.
Donovan A., Lima C.A., Pinkus J.L., Pinkus G.S., Zon L.I., Robine S., Andrews N.C.
Ferroportin (SLC40A1) is an iron transporter postulated to play roles in intestinal iron absorption and cellular iron release. Hepcidin, a regulatory peptide, binds to ferroportin and causes it to be internalized and degraded. If ferroportin is the major cellular iron exporter, ineffective hepcidi ... >> More
Ferroportin (SLC40A1) is an iron transporter postulated to play roles in intestinal iron absorption and cellular iron release. Hepcidin, a regulatory peptide, binds to ferroportin and causes it to be internalized and degraded. If ferroportin is the major cellular iron exporter, ineffective hepcidin function could explain manifestations of human hemochromatosis disorders. To investigate this, we inactivated the murine ferroportin (Fpn) gene globally and selectively. Embryonic lethality of Fpn(null/null) animals indicated that ferroportin is essential early in development. Rescue of embryonic lethality through selective inactivation of ferroportin in the embryo proper suggested that ferroportin has an important function in the extraembryonic visceral endoderm. Ferroportin-deficient animals accumulated iron in enterocytes, macrophages, and hepatocytes, consistent with a key role for ferroportin in those cell types. Intestine-specific inactivation of ferroportin confirmed that it is critical for intestinal iron absorption. These observations define the major sites of ferroportin activity and give insight into hemochromatosis. << Less
-
Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress.
Zhang D.L., Ghosh M.C., Ollivierre H., Li Y., Rouault T.A.
Ferroportin (FPN), the only known vertebrate iron exporter, transports iron from intestinal, splenic, and hepatic cells into the blood to provide iron to other tissues and cells in vivo. Most of the circulating iron is consumed by erythroid cells to synthesize hemoglobin. Here we found that erythr ... >> More
Ferroportin (FPN), the only known vertebrate iron exporter, transports iron from intestinal, splenic, and hepatic cells into the blood to provide iron to other tissues and cells in vivo. Most of the circulating iron is consumed by erythroid cells to synthesize hemoglobin. Here we found that erythroid cells not only consumed large amounts of iron, but also returned significant amounts of iron to the blood. Erythroblast-specific <i>Fpn</i> knockout (<i>Fpn</i> KO) mice developed lower serum iron levels in conjunction with tissue iron overload and increased FPN expression in spleen and liver without changing hepcidin levels. Our results also showed that <i>Fpn</i> KO mice, which suffer from mild hemolytic anemia, were sensitive to phenylhydrazine-induced oxidative stress but were able to tolerate iron deficiency upon exposure to a low-iron diet and phlebotomy, supporting that the anemia of <i>Fpn</i> KO mice resulted from erythrocytic iron overload and resulting oxidative injury rather than a red blood cell (RBC) production defect. Moreover, we found that the mean corpuscular volume (MCV) values of gain-of-function <i>FPN</i> mutation patients were positively associated with serum transferrin saturations, whereas MCVs of loss-of-function <i>FPN</i> mutation patients were not, supporting that erythroblasts donate iron to blood through FPN in response to serum iron levels. Our results indicate that FPN of erythroid cells plays an unexpectedly essential role in maintaining systemic iron homeostasis and protecting RBCs from oxidative stress, providing insight into the pathophysiology of FPN diseases. << Less
-
Point mutations change specificity and kinetics of metal uptake by ZupT from Escherichia coli.
Taudte N., Grass G.
The ZIP (ZRT-, IRT-like Protein) protein ZupT from Escherichia coli is a transporter with a broad substrate range. Phenotypic and transport analysis showed that ZupT, in addition to Zn(II), Fe(II) and Co(II) uptake, is also involved in transport of Mn(II) and Cd(II). Competition experiments with o ... >> More
The ZIP (ZRT-, IRT-like Protein) protein ZupT from Escherichia coli is a transporter with a broad substrate range. Phenotypic and transport analysis showed that ZupT, in addition to Zn(II), Fe(II) and Co(II) uptake, is also involved in transport of Mn(II) and Cd(II). Competition experiments with other substrate cations suggested that ZupT has a slight preference for Zn(II) and kinetic parameters for Zn(II) in comparison to Co(II) and Mn(II) transport support this observation. Metal uptake into cells by ZupT was optimum at near neutral pH and inhibited by ionophores. Bicarbonate or other ions did not influence metal-uptake via ZupT. Amino acid residues of ZupT contributing to substrate specificity were identified by site directed mutagenesis. ZupT with a H89A exchange lost Co(II) and Fe(II) transport activity, while the S117V mutant no longer transported Mn(II). ZupT with E152D was impaired in overall metal uptake but completely lost its ability to transport the substrates Zn(II) and Mn(II). These experimental findings expand our knowledge on the substrate specificity of ZupT and provide further insight into the function of ZupT as a bacterial member of the vastly distributed and important ZIP family. << Less
BioMetals 23:643-656(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.