Reaction participants Show >> << Hide
- Name help_outline (R)-carnitine Identifier CHEBI:16347 (Beilstein: 4292315,5732837; CAS: 541-15-1) help_outline Charge 0 Formula C7H15NO3 InChIKeyhelp_outline PHIQHXFUZVPYII-ZCFIWIBFSA-N SMILEShelp_outline C[N+](C)(C)C[C@H](O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 48 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-(trimethylamino)butanoyl-CoA Identifier CHEBI:61513 Charge -3 Formula C28H46N8O17P3S InChIKeyhelp_outline QAMRRBGWSPTAEJ-SVHODSNWSA-K SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-carnitinyl-CoA Identifier CHEBI:60932 Charge -3 Formula C28H46N8O18P3S InChIKeyhelp_outline BBRISSLDTUHWKG-PVMHLSDZSA-K SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@H](O)C[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-(trimethylamino)butanoate Identifier CHEBI:16244 (Beilstein: 3538300; CAS: 407-64-7) help_outline Charge 0 Formula C7H15NO2 InChIKeyhelp_outline JHPNVNIEXXLNTR-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28418 | RHEA:28419 | RHEA:28420 | RHEA:28421 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli.
Elssner T., Engemann C., Baumgart K., Kleber H.-P.
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrop ... >> More
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrophoretic homogeneity from overexpression strains. CaiB was identified as crotonobetainyl-CoA:carnitine CoA-transferase by MALDI-TOF mass spectrometry and enzymatic assays. The enzyme exhibits high cosubstrate specificity to CoA derivatives of trimethylammonium compounds. In particular, the N-terminus of CaiB shows significant identity with other CoA-transferases (e.g., FldA from Clostridium sporogenes, Frc from Oxalobacter formigenes, and BbsE from Thauera aromatica) and CoA-hydrolases (e.g., BaiF from Eubacterium sp.). CaiD was shown to be a crotonobetainyl-CoA hydratase using MALDI-TOF mass spectrometry and enzymatic assays. Besides crotonobetainyl-CoA CaiD is also able to hydrate crotonyl-CoA with a significantly lower Vmax (factor of 10(3)) but not crotonobetaine. The substrate specificity of CaiD and its homology to the crotonase confirm this enzyme as a new member of the crotonase superfamily. Concluding these results, it was verified that hydration of crotonobetaine to L-carnitine proceeds at the CoA level in two steps: the CaiD catalyzed hydration of crotonobetainyl-CoA to L-carnitinyl-CoA, followed by a CoA transfer from L-carnitinyl-CoA to crotonobetaine, catalyzed by CaiB. When gamma-butyrobetainyl-CoA was used as a cosubstrate (CoA donor), the first reaction is the CoA transfer. The optimal ratios of CaiB and CaiD during this hydration reaction, determined to be 4:1 when crotonobetainyl-CoA was used as cosubstrate and 5:1 when gamma-butyrobetainyl-CoA was used as cosubstrate, are different from that found for in vivo conditions (1:3). << Less
Biochemistry 40:11140-11148(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.