Enzymes
UniProtKB help_outline | 6 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-alanyl-L-glutamate Identifier CHEBI:61396 Charge -1 Formula C8H13N2O5 InChIKeyhelp_outline VYZAGTDAHUIRQA-WHFBIAKZSA-M SMILEShelp_outline C[C@H]([NH3+])C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-alanyl-D-glutamate Identifier CHEBI:61395 Charge -1 Formula C8H13N2O5 InChIKeyhelp_outline VYZAGTDAHUIRQA-CRCLSJGQSA-M SMILEShelp_outline C[C@H]([NH3+])C(=O)N[C@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28394 | RHEA:28395 | RHEA:28396 | RHEA:28397 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases.
Schmidt D.M.Z., Hubbard B.K., Gerlt J.A.
The members of the mechanistically diverse enolase superfamily catalyze different overall reactions by using a common catalytic strategy and structural scaffold. In the muconate lactonizing enzyme (MLE) subgroup of the superfamily, abstraction of a proton adjacent to a carboxylate group initiates ... >> More
The members of the mechanistically diverse enolase superfamily catalyze different overall reactions by using a common catalytic strategy and structural scaffold. In the muconate lactonizing enzyme (MLE) subgroup of the superfamily, abstraction of a proton adjacent to a carboxylate group initiates reactions, including cycloisomerization (MLE), dehydration [o-succinylbenzoate synthase (OSBS)], and 1,1-proton transfer (catalyzed by an OSBS that also catalyzes a promiscuous N-acylamino acid racemase reaction). The realization that a member of the MLE subgroup could catalyze a 1,1-proton transfer reaction, albeit poorly, led to a search for other enzymes which might catalyze a 1,1-proton transfer as their physiological reaction. YcjG from Escherichia coli and YkfB from Bacillus subtilis, proteins of previously unknown function, were discovered to be L-Ala-D/L-Glu epimerases, although they also catalyze the epimerization of other dipeptides. The values of k(cat)/K(M) for L-Ala-D/L-Glu for both proteins are approximately 10(4) M(-1) s(-1). The genomic context and the substrate specificity of both YcjG and YkfB suggest roles in the metabolism of the murein peptide, of which L-Ala-D-Glu is a component. Homologues possessing L-Ala-D/L-Glu epimerase activity have been identified in at least two other organisms. << Less