Reaction participants Show >> << Hide
- Name help_outline β-D-Glc-(1→4)-α-D-Glc-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:61247 Charge -2 Formula C67H110O17P2 InChIKeyhelp_outline HHYLATBINJGPSB-DJAXFCFISA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)OP([O-])(=O)O[C@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:61252 Charge -2 Formula C73H120O22P2 InChIKeyhelp_outline USQFNTGHPUIHAS-KQIVHAJBSA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)OP([O-])(=O)O[C@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O[C@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]3O)[C@H]2O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP Identifier CHEBI:58189 Charge -3 Formula C10H12N5O11P2 InChIKeyhelp_outline QGWNDRXFNXRZMB-UUOKFMHZSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 184 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28310 | RHEA:28311 | RHEA:28312 | RHEA:28313 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Phytanyl-pyrophosphate-linked substrate for a bacterial alpha-mannosyltransferase.
Lellouch A.C., Watt G.M., Geremia R.A., Flitsch S.L.
The biochemical characterization of bacterial glycosyltransferases involved in the assembly of cell-wall-associated polysaccharides is often hindered by the lack of the appropriate undecaprenyl-pyrophosphate-linked acceptor substrate. In order to find a suitable synthetic substrate for the alpha1, ... >> More
The biochemical characterization of bacterial glycosyltransferases involved in the assembly of cell-wall-associated polysaccharides is often hindered by the lack of the appropriate undecaprenyl-pyrophosphate-linked acceptor substrate. In order to find a suitable synthetic substrate for the alpha1,3-mannosyltransferase AceA from Acetobacter xylinum, phytanyl-pyrophosphate-linked cellobiose was prepared. In the presence of GDP-[14C]mannose and recombinant AceA, the phytanyl-pyrophosphate-linked cellobiose afforded a 14C-labeled trisaccharide that was sensitive to alpha-mannosidase degradation in a fashion analogous to the natural undecaprenyl-pyrophosphate-linked cellobiose substrate. These results suggest that phytanyl-pyrophosphate-linked oligosaccharides may be useful substrates for other important bacterial glycosyltransferases. << Less
Biochem Biophys Res Commun 272:290-292(2000) [PubMed] [EuropePMC]
-
Expression and biochemical characterisation of recombinant AceA, a bacterial alpha-mannosyltransferase.
Geremia R.A., Roux M., Ferreiro D.U., Dauphin-Dubois R., Lellouch A.C., Ielpi L.
Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar addi ... >> More
Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar addition is not yet well understood, mainly because of the difficulty of isolating these proteins. In this study, the aceA gene product expressed by Acetobacter xylinum, which is involved in the biosynthesis of the exopolysaccharide acetan, was overproduced in Escherichia coli and its function was characterised. The aceA ORF was subcloned into the expression vector pET29 in frame with the S.tag epitope. The recombinant protein was identified, and culture conditions were optimised for production of the soluble protein. The results of test reactions showed that AceA is able to transfer one alpha-mannose residue from GDP-mannose to cellobiose-P-P-lipid to produce alpha-mannose-cellobiose-P-P-lipid. AceA was not able to use free cellobiose as a substrate, indicating that the pyrophosphate-lipid moiety is needed for enzymatic activity. << Less
-
Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase gene from Acetobacter xylinum.
Petroni E.A., Ielpi L.
A genetic locus from Acetobacter xylinum involved in acetan polysaccharide synthesis has been characterized. The chromosomal region was identified by screening a genomic library of A. xylinum in a Xanthomonas campestris mutant defective in xanthan polysaccharide synthesis. The A. xylinum cosmid cl ... >> More
A genetic locus from Acetobacter xylinum involved in acetan polysaccharide synthesis has been characterized. The chromosomal region was identified by screening a genomic library of A. xylinum in a Xanthomonas campestris mutant defective in xanthan polysaccharide synthesis. The A. xylinum cosmid clone can functionally complement a xanthan-negative mutant. The polymer produced by the recombinant strain was found to be indistinguishable from xanthan. Insertion mutagenesis and subcloning of the cosmid clone combined with complementation studies allowed the identification of a 2.3-kb fragment of A. xylinum chromosomal DNA. The nucleotide sequence of this fragment was analyzed and found to contain an open reading frame (aceA) of 1,182 bp encoding a protein of 43.2 kDa. Results from biochemical and genetic analyses strongly suggest that the aceA gene encodes the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase enzyme, which is responsible for the transfer of an alpha-mannosyl residue from GDP-Man to cellobiosyl-diphosphopolyprenol. A search for similarities with other known mannosyltransferases revealed that all bacterial alpha-mannosyltransferases have a short COOH-terminal amino acid sequence in common. << Less
-
Identification of essential amino acids in the bacterial alpha -mannosyltransferase aceA.
Abdian P.L., Lellouch A.C., Gautier C., Ielpi L., Geremia R.A.
The alpha-mannosyltransferase AceA from Acetobacter xylinum belongs to the CaZY family 4 of retaining glycosyltransferases. We have identified a series of either highly conserved or invariant residues that are found in all family 4 enzymes as well as other retaining glycosyltransferases. These res ... >> More
The alpha-mannosyltransferase AceA from Acetobacter xylinum belongs to the CaZY family 4 of retaining glycosyltransferases. We have identified a series of either highly conserved or invariant residues that are found in all family 4 enzymes as well as other retaining glycosyltransferases. These residues included Glu-287 and Glu-295, which comprise an EX(7)E motif and have been proposed to be involved in catalysis. Alanine replacements of each conserved residue were constructed by site-directed mutagenesis. The mannosyltransferase activity of each mutant was examined by both an in vitro transferase assay using recombinant mutant AceA expressed in Escherichia coli and by an in vivo rescue assay by expressing the mutant AceA in a Xanthomonas campestris gumH(-) strain. We found that only mutants K211A and E287A lost all detectable activity both in vitro and in vivo, whereas E295A retained residual activity in the more sensitive in vivo assay. H127A and S162A each retained reduced but significant activities both in vitro and in vivo. Secondary structure predictions of AceA and subsequent comparison with the crystal structures of the T4 beta-glucosyltransferase and MurG suggest that AceA Lys-211 and Glu-295 are involved in nucleotide sugar donor binding, leaving Glu-287 of the EX(7)E as a potential catalytic residue. << Less
-
Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence.
Katzen F., Ferreiro D.U., Oddo C.G., Ielmini M.V., Becker A., Puhler A., Ielpi L.
Xanthan is an industrially important exopolysaccharide produced by the phytopathogenic, gram-negative bacterium Xanthomonas campestris pv. campestris. It is composed of polymerized pentasaccharide repeating units which are assembled by the sequential addition of glucose-1-phosphate, glucose, manno ... >> More
Xanthan is an industrially important exopolysaccharide produced by the phytopathogenic, gram-negative bacterium Xanthomonas campestris pv. campestris. It is composed of polymerized pentasaccharide repeating units which are assembled by the sequential addition of glucose-1-phosphate, glucose, mannose, glucuronic acid, and mannose on a polyprenol phosphate carrier (L. Ielpi, R. O. Couso, and M. A. Dankert, J. Bacteriol. 175:2490-2500, 1993). A cluster of 12 genes in a region designated xpsI or gum has been suggested to encode proteins involved in the synthesis and polymerization of the lipid intermediate. However, no experimental evidence supporting this suggestion has been published. In this work, from the biochemical analysis of a defined set of X. campestris gum mutants, we report experimental data for assigning functions to the products of the gum genes. We also show that the first step in the assembly of the lipid-linked intermediate is severely affected by the combination of certain gum and non-gum mutations. In addition, we provide evidence that the C-terminal domain of the gumD gene product is sufficient for its glucosyl-1-phosphate transferase activity. Finally, we found that alterations in the later stages of xanthan biosynthesis reduce the aggressiveness of X. campestris against the plant. << Less
J. Bacteriol. 180:1607-1617(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.