Reaction participants Show >> << Hide
- Name help_outline di-trans,octa-cis-undecaprenyl phosphate Identifier CHEBI:60392 Charge -2 Formula C55H89O4P InChIKeyhelp_outline UFPHFKCTOZIAFY-NTDVEAECSA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 231 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-glucosyl di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:61254 Charge -2 Formula C61H100O12P2 InChIKeyhelp_outline WADQQVAMGZIDFQ-ZMDJJFASSA-L SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/CC\C(C)=C/COP([O-])(=O)OP([O-])(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UMP Identifier CHEBI:57865 (Beilstein: 3570858) help_outline Charge -2 Formula C9H11N2O9P InChIKeyhelp_outline DJJCXFVJDGTHFX-XVFCMESISA-L SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 53 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28126 | RHEA:28127 | RHEA:28128 | RHEA:28129 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline |
Publications
-
Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris.
Ielpi L., Couso R.O., Dankert M.A.
Lipid-linked intermediates are involved in the synthesis of the exopolysaccharide xanthan produced by the bacterium Xanthomonas campestris (L. Ielpi, R. O. Couso, and M. A. Dankert, FEBS Lett. 130:253-256, 1981). In this study, the stepwise assembly of the repeating pentasaccharide unit of xanthan ... >> More
Lipid-linked intermediates are involved in the synthesis of the exopolysaccharide xanthan produced by the bacterium Xanthomonas campestris (L. Ielpi, R. O. Couso, and M. A. Dankert, FEBS Lett. 130:253-256, 1981). In this study, the stepwise assembly of the repeating pentasaccharide unit of xanthan is described. EDTA-treated X. campestris cells were used as both enzyme preparation and lipid-P acceptor, and UDP-Glc, GDP-Man, and UDP-glucuronic acid were used as sugar donors. A linear pentasaccharide unit is assembled on a polyprenol-P lipid carrier by the sequential addition of glucose-1-P, glucose, mannose, glucuronic acid, and mannose. The in vitro synthesis of pentasaccharide-P-P-polyprenol was also accompanied by the incorporation of radioactivity into a polymeric product, which was characterized as xanthan, on the basis of gel filtration and permethylation studies. Results from two-stage reactions showed that essentially pentasaccharide-P-P-polyprenol is polymerized. In addition, the direction of chain elongation has been studied by in vivo experiments. The polymerization of lipid-linked repeat units occurs by the successive transfer of the growing chain to a new pentasaccharide-P-P-polyprenol. The reaction involves C-1 of glucose at the reducing end of the polyprenol-linked growing chain and C-4 of glucose at the nonreducing position of the newly formed polyprenol-linked pentasaccharide, generating a branched polymer with a trisaccharide side chain. << Less
J Bacteriol 175:2490-2500(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae.
Kim S.Y., Kim J.G., Lee B.M., Cho J.Y.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experim ... >> More
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. << Less
Biotechnol. Lett. 31:265-270(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.