Reaction participants Show >> << Hide
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Reactive Blue 5 Identifier CHEBI:64278 Charge -3 Formula C29H21ClN7O11S3 InChIKeyhelp_outline TWSFSSBSSCLGKM-UHFFFAOYSA-K SMILEShelp_outline Nc1c(cc(Nc2ccc(c(Nc3nc(Cl)nc(Nc4cccc(c4)S([O-])(=O)=O)n3)c2)S([O-])(=O)=O)c2C(O)c3ccccc3C(O)c12)S([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,2'-disulfonyl azobenzene Identifier CHEBI:63950 Charge -2 Formula C12H8N2O6S2 InChIKeyhelp_outline APPAXLRBULXMAH-BUHFOSPRSA-L SMILEShelp_outline [O-]S(=O)(=O)c1ccccc1\N=N\c1ccccc1S([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]benzenesulfonate Identifier CHEBI:63955 Charge -1 Formula C9H7ClN5O3S InChIKeyhelp_outline INKDIXXCRXOUGO-UHFFFAOYSA-M SMILEShelp_outline Nc1nc(Cl)nc(Nc2cccc(c2)S([O-])(=O)=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phthalate Identifier CHEBI:17563 (Beilstein: 3906509; CAS: 3198-29-6) help_outline Charge -2 Formula C8H4O4 InChIKeyhelp_outline XNGIFLGASWRNHJ-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)c1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28086 | RHEA:28087 | RHEA:28088 | RHEA:28089 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA.
Zubieta C., Joseph R., Krishna S.S., McMullan D., Kapoor M., Axelrod H.L., Miller M.D., Abdubek P., Acosta C., Astakhova T., Carlton D., Chiu H.J., Clayton T., Deller M.C., Duan L., Elias Y., Elsliger M.A., Feuerhelm J., Grzechnik S.K., Hale J., Han G.W., Jaroszewski L., Jin K.K., Klock H.E., Knuth M.W., Kozbial P., Kumar A., Marciano D., Morse A.T., Murphy K.D., Nigoghossian E., Okach L., Oommachen S., Reyes R., Rife C.L., Schimmel P., Trout C.V., van den Bedem H., Weekes D., White A., Xu Q., Hodgson K.O., Wooley J., Deacon A.M., Godzik A., Lesley S.A., Wilson I.A.
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a tw ... >> More
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. << Less
-
Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1.
Sugano Y., Matsushima Y., Tsuchiya K., Aoki H., Hirai M., Shoda M.
The reactants produced by action of a purified unique dye-decolorizing peroxidase, DyP, on a commercial anthraquinone dye, Reactive Blue 5, were investigated using electrospray ionization mass spectrometry (ESI-MS), thin-layer chromatography (TLC), and (1)H- and (13)C-nuclear magnetic resonance (N ... >> More
The reactants produced by action of a purified unique dye-decolorizing peroxidase, DyP, on a commercial anthraquinone dye, Reactive Blue 5, were investigated using electrospray ionization mass spectrometry (ESI-MS), thin-layer chromatography (TLC), and (1)H- and (13)C-nuclear magnetic resonance (NMR). The results of ESI-MS analysis showed that phthalic acid, a Product 2 (molecular weight 472.5), and a Product 3 (molecular weight 301.5), were produced. Product 2 and Product 3 were generated by usual peroxidase reaction, whereas phthalic acid was generated by hydrolase- or oxygenase-catalyzed reaction. One potential associated product, o-aminobenzene sulfonic acid, was found to be converted to 2,2'-disulfonyl azobenzene by ESI-MS and NMR analyses. From these results, we propose, for the first time, the degradation pathway of an anthraquinone dye by the enzyme DyP. << Less
-
Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium.
Brown M.E., Barros T., Chang M.C.
Plant biomass represents a renewable feedstock that has not yet been fully tapped because of the difficulty in accessing the carbon in its structural biopolymers. Lignin is an especially challenging substrate, but select microbes have evolved complex systems of enzymes for its breakdown through a ... >> More
Plant biomass represents a renewable feedstock that has not yet been fully tapped because of the difficulty in accessing the carbon in its structural biopolymers. Lignin is an especially challenging substrate, but select microbes have evolved complex systems of enzymes for its breakdown through a radical-mediated oxidation process. Fungal systems are well-characterized for their ability to depolymerize lignin, but the ability of bacteria to react with this substrate remains elusive. We have therefore focused on elucidating strategies used by lignin-reactive soil bacteria and describing their oxidative enzyme systems. We now report the identification and characterization of an unusual C-type dye-decolorizing peroxidase from Amycolatopsis sp. 75iv2 (DyP2), which belongs to a family of heme peroxidases reported to be involved in bacterial lignin degradation. Biochemical studies indicate that DyP2 has novel function for this family, with versatile and high activity both as a peroxidase and Mn peroxidase (k(cat)/K(M) ≈ 10(5)-10(6) M(-1) s(-1)). It also has a Mn-dependent oxidase mode of action that expands its substrate scope. Crystallographic studies of DyP2 at 2.25 Å resolution show the existence of a Mn binding pocket and support its key role in catalysis. << Less
ACS Chem. Biol. 7:2074-2081(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
New and classic families of secreted fungal heme peroxidases.
Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lundell T.
Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant co ... >> More
Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the "classic" fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments. << Less
Appl Microbiol Biotechnol 87:871-897(2010) [PubMed] [EuropePMC]
-
Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120.
Ogola H.J., Kamiike T., Hashimoto N., Ashida H., Ishikawa T., Shibata H., Sawa Y.
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified e ... >> More
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35 degrees C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 muM.min(-1), respectively. The apparent K(m) and k(cat)/K(m) values for Reactive Blue 5 were 3.6 muM and 1.2 x 10(7) M(-1) s(-1), respectively, while the apparent K(m) and k(cat)/K(m) values for H(2)O(2) were 5.8 muM and 6.6 x 10(6) M(-1) s(-1), respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2-to approximately 50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes. << Less
Appl Environ Microbiol 75:7509-7518(2009) [PubMed] [EuropePMC]
-
DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes.
Liers C., Bobeth C., Pecyna M., Ullrich R., Hofrichter M.
The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (approximately 300 U l(-1)). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media ... >> More
The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (approximately 300 U l(-1)). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media (e.g. tomato juice suspensions) at levels up to 8,000 U l(-1). Two pure peroxidase forms (A. auricula-judae peroxidase (AjP I and AjP II) could be obtained from respective culture liquids by three chromatographic steps. Spectroscopic and electrophoretic analyses of the purified proteins revealed their heme and peroxidase nature. The N-terminal amino acid sequence of AjP matched well with sequences of fungal enzymes known as "dye-decolorizing peroxidases". Homology was found to the N-termini of peroxidases from Marasmius scorodonius (up to 86%), Thanatephorus cucumeris (60%), and Termitomyces albuminosus (60%). Both enzyme forms catalyzed not only the conversion of typical peroxidase substrates such as 2,6-dimethoxyphenol and 2,2'-azino-bis(3-ethylthiazoline-6-sulfonate) but also the decolorization of the high-redox potential dyes Reactive Blue 5 and Reactive Black 5, whereas manganese(II) ions (Mn(2+)) were not oxidized. Most remarkable, however, is the finding that both AjPs oxidized nonphenolic lignin model compounds (veratryl alcohol; adlerol, a nonphenolic beta-O-4 lignin model dimer) at low pH (maximum activity at pH 1.4), which indicates a certain ligninolytic activity of dye-decolorizing peroxidases. << Less
Appl. Microbiol. Biotechnol. 85:1869-1879(2010) [PubMed] [EuropePMC]