Enzymes
UniProtKB help_outline | 1 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 1-deoxy-D-xylulose Identifier CHEBI:28354 Charge 0 Formula C5H10O4 InChIKeyhelp_outline IGUZJYCAXLYZEE-RFZPGFLSSA-N SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-deoxy-D-xylulose 5-phosphate Identifier CHEBI:57792 (Beilstein: 11127452) help_outline Charge -2 Formula C5H9O7P InChIKeyhelp_outline AJPADPZSRRUGHI-RFZPGFLSSA-L SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27990 | RHEA:27991 | RHEA:27992 | RHEA:27993 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Phosphorylation of 1-deoxy-D-xylulose by D-xylulokinase of Escherichia coli.
Wungsintaweekul J., Herz S., Hecht S., Eisenreich W., Feicht R., Rohdich F., Bacher A., Zenk M.H.
1-deoxy-D-xylulose 5-phosphate serves as a precursor for the biosynthesis of the vitamins thiamine and pyridoxal and for the formation of isopentenyl pyrophosphate and dimethylallyl pyrophosphate via the nonmevalonate pathway of terpenoid biosynthesis. Earlier studies had shown that Escherichia co ... >> More
1-deoxy-D-xylulose 5-phosphate serves as a precursor for the biosynthesis of the vitamins thiamine and pyridoxal and for the formation of isopentenyl pyrophosphate and dimethylallyl pyrophosphate via the nonmevalonate pathway of terpenoid biosynthesis. Earlier studies had shown that Escherichia coli incorporates unphosphorylated 1-deoxy-D-xylulose into the terpenoid side chain of ubiquinones with high efficacy. We show that D-xylulokinase of E. coli (EC 2.7.1.17) catalyzes the phosphorylation of 1-deoxy-D-xylulose at the hydroxy group of C-5 at a rate of 1.6 micromol.mg min-1. This reaction constitutes a potential salvage pathway for the generation of 1-deoxy-D-xylulose 5-phosphate from exogenous or endogenous 1-deoxy-D-xylulose as starting material for the biosynthesis of terpenoids, thiamine and pyridoxal. << Less
-
A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway.
Hemmerlin A., Tritsch D., Hartmann M., Pacaud K., Hoeffler J.F., van Dorsselaer A., Rohmer M., Bach T.J.
Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vic ... >> More
Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing D-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as "xylulose kinase" might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. << Less