Enzymes
UniProtKB help_outline | 5 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline isochorismate Identifier CHEBI:29780 (Beilstein: 8334070) help_outline Charge -2 Formula C10H8O6 InChIKeyhelp_outline NTGWPRCCOQCMGE-YUMQZZPRSA-L SMILEShelp_outline O[C@@H]1[C@@H](OC(=C)C([O-])=O)C=CC=C1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline salicylate Identifier CHEBI:30762 (CAS: 63-36-5) help_outline Charge -1 Formula C7H5O3 InChIKeyhelp_outline YGSDEFSMJLZEOE-UHFFFAOYSA-M SMILEShelp_outline Oc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27874 | RHEA:27875 | RHEA:27876 | RHEA:27877 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica.
Kerbarh O., Ciulli A., Howard N.I., Abell C.
In some bacteria, salicylate is synthesized using the enzymes isochorismate synthase and isochorismate pyruvate lyase. In contrast, gene inactivation and complementation experiments with Yersinia enterocolitica suggest the synthesis of salicylate in the biosynthesis of the siderophore yersiniabact ... >> More
In some bacteria, salicylate is synthesized using the enzymes isochorismate synthase and isochorismate pyruvate lyase. In contrast, gene inactivation and complementation experiments with Yersinia enterocolitica suggest the synthesis of salicylate in the biosynthesis of the siderophore yersiniabactin involves a single protein, Irp9, which converts chorismate directly into salicylate. In the present study, Irp9 was for the first time heterologously expressed in Escherichia coli as a hexahistidine fusion protein, purified to near homogeneity, and characterized biochemically. The recombinant protein was found to be a dimer, each subunit of which has a molecular mass of 50 kDa. Enzyme assays, reverse-phase high-pressure liquid chromatography and 1H nuclear magnetic resonance (NMR) spectroscopic analyses confirmed that Irp9 is a salicylate synthase and converts chorismate to salicylate with a K(m) for chorismate of 4.2 microM and a k(cat) of 8 min(-1). The reaction was shown to proceed through the intermediate isochorismate, which was detected directly using 1H NMR spectroscopy. << Less
-
Entropic and enthalpic components of catalysis in the mutase and lyase activities of Pseudomonas aeruginosa PchB.
Luo Q., Meneely K.M., Lamb A.L.
The isochorismate-pyruvate lyase from Pseudomonas aeruginosa (PchB) catalyzes two pericyclic reactions, demonstrating the eponymous activity and also chorismate mutase activity. The thermodynamic parameters for these enzyme-catalyzed activities, as well as the uncatalyzed isochorismate decompositi ... >> More
The isochorismate-pyruvate lyase from Pseudomonas aeruginosa (PchB) catalyzes two pericyclic reactions, demonstrating the eponymous activity and also chorismate mutase activity. The thermodynamic parameters for these enzyme-catalyzed activities, as well as the uncatalyzed isochorismate decomposition, are reported from temperature dependence of k(cat) and k(uncat) data. The entropic effects do not contribute to enzyme catalysis as expected from previously reported chorismate mutase data. Indeed, an entropic penalty for the enzyme-catalyzed mutase reaction (ΔS(++) = -12.1 ± 0.6 cal/(mol K)) is comparable to that of the previously reported uncatalyzed reaction, whereas that of the enzyme-catalyzed lyase reaction (ΔS(++) = -24.3 ± 0.2 cal/(mol K)) is larger than that of the uncatalyzed lyase reaction (-15.77 ± 0.02 cal/(mol K)) documented here. With the assumption that chemistry is rate-limiting, we propose that a reactive substrate conformation is formed upon loop closure of the active site and that ordering of the loop contributes to the entropic penalty for converting the enzyme substrate complex to the transition state. << Less
-
Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis.
Zwahlen J., Kolappan S., Zhou R., Kisker C., Tonge P.J.
MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesi ... >> More
MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family. << Less
Biochemistry 46:954-964(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase.
Harrison A.J., Yu M., Gardenborg T., Middleditch M., Ramsay R.J., Baker E.N., Lott J.S.
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate ... >> More
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis. << Less
-
pH Dependence of catalysis by Pseudomonas aeruginosa isochorismate-pyruvate lyase: implications for transition state stabilization and the role of lysine 42.
Olucha J., Ouellette A.N., Luo Q., Lamb A.L.
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site l ... >> More
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ∼100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains. << Less
-
Mechanistic insights into the isochorismate pyruvate lyase activity of the catalytically promiscuous PchB from combinatorial mutagenesis and selection.
Kunzler D.E., Sasso S., Gamper M., Hilvert D., Kast P.
PchB from Pseudomonas aeruginosa possesses isochorismate pyruvate lyase (IPL) and weak chorismate mutase (CM) activity. Homology modeling based on a structurally characterized CM, coupled with randomization of presumed key active site residues (Arg54, Glu90, Gln91) and in vivo selection for CM act ... >> More
PchB from Pseudomonas aeruginosa possesses isochorismate pyruvate lyase (IPL) and weak chorismate mutase (CM) activity. Homology modeling based on a structurally characterized CM, coupled with randomization of presumed key active site residues (Arg54, Glu90, Gln91) and in vivo selection for CM activity, was used to derive mechanistic insights into the IPL activity of PchB. Mutation of Arg54 was incompatible with viability, and the CM and IPL activities of an engineered R54K variant were reduced 1,000-fold each. The observation that position 90 was tolerant to substitution but position 91 was essentially confined to Gln or Glu in functional variants rules out involvement of Glu90 in general base catalysis. Counter to the generally accepted mechanistic hypothesis for pyruvate lyases, we propose for PchB a rare [1,5]-sigmatropic reaction mechanism that invokes electrostatic catalysis in analogy to the [3,3]-pericyclic rearrangement of chorismate in CMs. A common catalytic principle for both PchB functions is also supported by the covariance of the catalytic parameters for the CM and IPL activities and the shared functional requirement for a protonated Glu91 in Q91E variants. The experiments demonstrate that focusing directed evolution strategies on the readily accessible surrogate activity of an enzyme can provide valuable insights into the mechanism of the primary reaction. << Less
-
Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa.
Serino L., Reimmann C., Baur H., Beyeler M., Visca P., Haas D.
Salicylate is a precursor of pyochelin in Pseudomonas aeruginosa and both compounds display siderophore activity. To elucidate the salicylate biosynthetic pathway, we have cloned and sequenced a chromosomal region of P. aeruginosa PAO1 containing two adjacent genes, designated pchB and pchA, which ... >> More
Salicylate is a precursor of pyochelin in Pseudomonas aeruginosa and both compounds display siderophore activity. To elucidate the salicylate biosynthetic pathway, we have cloned and sequenced a chromosomal region of P. aeruginosa PAO1 containing two adjacent genes, designated pchB and pchA, which are necessary for salicylate formation. The pchA gene encodes a protein of 52 kDa with extensive similarity to the chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase (component I) and p-aminobenzoate synthase (component I), whereas the 11 kDa protein encoded by pchB does not show significant similarity with other proteins. The pchB stop codon overlaps the presumed pchA start codon. Expression of the pchA gene in P. aeruginosa appears to depend on the transcription and translation of the upstream pchB gene. The pchBA genes are the first salicylate biosynthetic genes to be reported. Salicylate formation was demonstrated in an Escherichia coli entC mutant lacking isochorismate synthase when this strain expressed both the pchBA genes, but not when it expressed pchB alone. By contrast, an entB mutant of E. coli blocked in the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate formed salicylate when transformed with a pchB expression construct. Salicylate formation could also be demonstrated in vitro when chorismate was incubated with a crude extract of P. aeruginosa containing overproduced PchA and PchB proteins; salicylate and pyruvate were formed in equimolar amounts. Furthermore, salicylate-forming activity could be detected in extracts from a P. aeruginosa pyoverdin-negative mutant when grown under iron limitation, but not with iron excess. Our results are consistent with a pathway leading from chorismate to isochorismate and then to salicylate plus pyruvate, catalyzed consecutively by the iron-repressible PchA and PchB proteins in P. aeruginosa. << Less
-
Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).
Manos-Turvey A., Bulloch E.M., Rutledge P.J., Baker E.N., Lott J.S., Payne R.J.
Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the ... >> More
Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate. << Less
-
Pericyclic reactions catalyzed by chorismate-utilizing enzymes.
Lamb A.L.
One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure--function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reaction ... >> More
One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure--function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST family (menaquinone, siderophore, or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries. << Less
-
Modification of residue 42 of the active site loop with a lysine-mimetic side chain rescues isochorismate-pyruvate lyase activity in Pseudomonas aeruginosa PchB.
Olucha J., Meneely K.M., Lamb A.L.
PchB is an isochorismate-pyruvate lyase from Pseudomonas aeruginosa. A positively charged lysine residue is located in a flexible loop that behaves as a lid to the active site, and the lysine residue is required for efficient production of salicylate. A variant of PchB that lacks the lysine at res ... >> More
PchB is an isochorismate-pyruvate lyase from Pseudomonas aeruginosa. A positively charged lysine residue is located in a flexible loop that behaves as a lid to the active site, and the lysine residue is required for efficient production of salicylate. A variant of PchB that lacks the lysine at residue 42 has a reduced catalytic free energy of activation of up to 4.4 kcal/mol. Construction of a lysine isosteric residue bearing a positive charge at the appropriate position leads to the recovery of 2.5-2.7 kcal/mol (about 60%) of the 4.4 kcal/mol by chemical rescue. Exogenous addition of ethylamine to the K42A variant leads to a neglible recovery of activity (0.180 kcal/mol, roughly 7% rescue), whereas addition of propylamine caused an additional modest loss in catalytic power (0.056 kcal/mol, or 2% loss). This is consistent with the view that (a) the lysine-42 residue is required in a specific conformation to stabilize the transition state and (b) the correct conformation is achieved for a lysine-mimetic side chain at site 42 in the course of loop closure, as expected for transition-state stabilization by the side chain ammonio function. That the positive charge is the main effector of transition state stabilization is shown by the construction of a lysine-isosteric residue capable of exerting steric effects and hydrogen bonding but not electrostatic effects, leading to a modest increase of catalytic power (0.267-0.505 kcal/mol of catalytic free energy, or roughly 6-11% rescue). << Less