Reaction participants Show >> << Hide
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 142 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phenylacetyl-CoA Identifier CHEBI:57390 Charge -4 Formula C29H38N7O17P3S InChIKeyhelp_outline ZIGIFDRJFZYEEQ-CECATXLMSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phenylacetylglycine Identifier CHEBI:60874 Charge -1 Formula C10H10NO3 InChIKeyhelp_outline UTYVDVLMYQPLQB-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)CNC(=O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27850 | RHEA:27851 | RHEA:27852 | RHEA:27853 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The effects of ions on the conjugation of xenobiotics by the aralkyl-CoA and arylacetyl-CoA N-acyltransferases from bovine liver mitochondria.
Kelley M., Vessey D.A.
The aralkyl-CoA:glycine N-acyltransferase and the arylacetyl-CoA:amino acid of N-acyltransferase were purified from bovine liver mitochondria and their response to a variety of ions investigated. The activity of the aralkyl transferase was inhibited by divalent cations with all substrates investig ... >> More
The aralkyl-CoA:glycine N-acyltransferase and the arylacetyl-CoA:amino acid of N-acyltransferase were purified from bovine liver mitochondria and their response to a variety of ions investigated. The activity of the aralkyl transferase was inhibited by divalent cations with all substrates investigated. For benzoyl-coenzyme A (CoA), K+ was a competitive inhibitor, competing for binding at the benzoyl-CoA binding site. With salicylyl-CoA, K+ did increase the dissociation constant (KD) for acyl-CoA but it was not a competitive inhibitor and in addition, K+ increased the Michaelis constant for glycine (Kglym) tenfold. The data suggest that the increase in Kglym is due to bound K+ forcing reorientation of salicylyl-CoA at the active site so that it impinges on the glycine binding site. Inorganic anions and cations did not affect the extent of product inhibition by hippuric acid with either acyl-CoA and this was because they affected the binding of acyl-CoA and hippuric acid to the same extent. Ions did, however, greatly reduce the extent of product inhibition by CoA. This is critical because under approximate in vivo conditions (2.5 mM CoA), the salt-free enzyme would be almost completely inhibited by CoA. The arylacetyl transferase was activated by inorganic ions when assayed at saturating substrate concentrations. However, at physiologic concentrations of glycine certain salts were modestly inhibitory. The inhibitory effect of KCl was characterized by a large decrease in the affinity of the enzyme for phenylacetyl-CoA, suggesting that the arylacetyl-CoA region of the active site contained an inhibitory ion binding site. At low (physiologic) concentrations of substrate, the arylacetyl transferase was extensively inhibited by CoA and this inhibition was greatly reduced by ions. The 3'-phosphate group on CoA was found to be important for binding to the salt-free enzyme but in the presence of ions its importance was diminished. In the absence of inorganic ions the affinity of the enzyme for phenylacetyl-CoA and naphthylacetyl-CoA was so high that it could not be measured. In the presence of KCl the KD values for phenylacetyl-CoA and naphthylacetyl-CoA were similar, but the Km for glycine was extremely high for 1-naphthylacetyl-CoA conjugation, which accounts for its slow rate of metabolism. Conjugation with glutamine had a high Michaelis constant for glutamine (KGlum) and a low maximum velocity (Vmax) which accounts for the absence of glutamine conjugation in vivo. << Less
-
Benzoyl-coenzyme A:glycine N-acyltransferase and phenylacetyl-coenzyme A:glycine N-acyltransferase from bovine liver mitochondria. Purification and characterization.
Nandi D.L., Lucas S.V., Webster L.T. Jr.
Two closely related acyl-CoA:amino acid N-acyl-transferases were purified to near-homogeneity from preparations of bovine liver mitochondria. Each enzyme consisted of a single polypeptide chain with a molecular weight near 33,000. One transferase was specific for benzoyl-CoA, salicyl-CoA, and cert ... >> More
Two closely related acyl-CoA:amino acid N-acyl-transferases were purified to near-homogeneity from preparations of bovine liver mitochondria. Each enzyme consisted of a single polypeptide chain with a molecular weight near 33,000. One transferase was specific for benzoyl-CoA, salicyl-CoA, and certain short straight and branched chain fatty acyl-CoA esters as substrates while the other enzyme specifically used either phenylacetyl-CoA or indoleacetyl-CoA. Acyl-CoA substrates for one transferase inhibited the other. Glycine was the preferred acyl acceptor for both enzymes but either L-asparagine or L-glutamine also served. Peptide products for each transferase were identified by mass spectrometry. Enzymatic cleavage of acyl-CoA was stoichiometric with release of thiol and formation of peptide product. Apparent Km values were low for the preferred acyl-CoA substrates relative to the amino acid acceptors (10(-5) M range compared to greater than 10(-3) M). Both enzymes were inhibited by high nonphysiological concentrations of certain divalent cations (Mg2+, Ni2+, and Zn2+). In contrast to benzoyltransferase, phenylacetyltransferase was sensitive to inhibition by either 10(-4) M 5,5'-dithiobis(2-nitrobenzoate) or 10(-5) M p-chloromercuribenzoate; 10(-4) M phenylacetyl-CoA partially protected phenylacetyltransferase against 5,5'-dithiobis(2-nitrobenzoate) inactivation but 10(-1) M glycine did not. For activity, phenylacetyltransferase required addition of certain monovalent cations (K+, Rb+, Na+, Li+, Cs+, or (NH4)+) to the assay system but benzoyltransferase did not. Preliminary kinetic studies of both transferases were consistent with a sequential reaction mechanism in which the acyl-CoA substrate adds to the enzyme first, glycine adds before CoA leaves, and the peptide product dissociates last. << Less
J. Biol. Chem. 254:7230-7237(1979) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Determination of the sequence of the arylacetyl acyl-CoA:amino acid N-acyltransferase from bovine liver mitochondria and its homology to the aralkyl acyl-CoA:amino acid N-acyltransferase.
Vessey D.A., Lau E.
The arylacetyl acyl-CoA:amino acid N-acyltransferase was previously purified to homogeneity from bovine liver mitochondria, and partial sequences were obtained for peptides generated by cyanogen bromide cleavage of the enzyme. One of these sequences was used to design an oligonucleotide probe that ... >> More
The arylacetyl acyl-CoA:amino acid N-acyltransferase was previously purified to homogeneity from bovine liver mitochondria, and partial sequences were obtained for peptides generated by cyanogen bromide cleavage of the enzyme. One of these sequences was used to design an oligonucleotide probe that was utilized to screen a bovine liver cDNA library. Several clones were isolated and sequenced, and the sequence is given. The cDNA contains 346 bases of 5'-untranslated region and 439 bases of 3' untranslated region. The cDNA codes for an enzyme containing 295 amino acid residues. The sequence gives a molecular weight for the enzyme of 38,937, which is larger than that previously estimated for the functional enzyme, which suggests the existence of ca. 5 kDA of signal peptide. The molecular weight of the enzyme was slightly lower than that of the aralkyltransferase, which was previously determined to be 39,229. Comparison of this sequence with that which we previously obtained for the aralkyltransferase indicated that the coding regions were of identical length and that the sequences were 78% homologous. However, the 5' and 3' untranslated regions had less than 29% homology. The derived amino acid sequences were 71% homologous. This high homology indicates a common origin for the two enzymes. There are, however, significant differences in amino acid compositions, and these are discussed. << Less
J. Biochem. Mol. Toxicol. 12:275-279(1998) [PubMed] [EuropePMC]
-
Structural comparison between the mitochondrial aralkyl-CoA and arylacetyl-CoA N-acyltransferases.
Kelley M., Vessey D.A.
The aralkyl and arylacetyl transferases were purified to homogeneity from bovine kidney by a slight modification of a previous procedure. The M(r) of the arylacetyl transferase was estimated to be 33,500 by SDS/PAGE and that of the aralkyl transferase to be 33,750 by a combination of SDS/PAGE and ... >> More
The aralkyl and arylacetyl transferases were purified to homogeneity from bovine kidney by a slight modification of a previous procedure. The M(r) of the arylacetyl transferase was estimated to be 33,500 by SDS/PAGE and that of the aralkyl transferase to be 33,750 by a combination of SDS/PAGE and gel-filtration analysis. N-Terminal-sequence analysis indicated a blocked N-terminus for the arylacetyl transferase and gave the following sequence for the aralkyl transferase: M-F-L-L-Q-G-A-Q-M-L-Q-M-L-E-K. Amino acid analysis revealed differences in composition between the two enzymes. Most notable was the fact that the aralkyl transferase had more methionine and leucine. This difference could be partially accounted for by assuming that the methionine-and-leucine-rich N-terminus was missing from the arylacetyl transferase. Chemical cleavage of the two enzymes at methionine residues using CNBr gave rise to several peptides for each enzyme. N-Terminal-sequence analysis of the 8000-M(r) peptide from the arylacetyl transferase gave a sequence with 69% similarity to the 9000-M(r) peptide from the aralkyl transferase. This was taken to indicate a common origin for the two enzymes. << Less