Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline O-acetyl-L-homoserine Identifier CHEBI:57716 Charge 0 Formula C6H11NO4 InChIKeyhelp_outline FCXZBWSIAGGPCB-YFKPBYRVSA-N SMILEShelp_outline CC(=O)OCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hydrogen sulfide Identifier CHEBI:29919 (CAS: 15035-72-0) help_outline Charge -1 Formula HS InChIKeyhelp_outline RWSOTUBLDIXVET-UHFFFAOYSA-M SMILEShelp_outline [S-][H] 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-homocysteine Identifier CHEBI:58199 Charge 0 Formula C4H9NO2S InChIKeyhelp_outline FFFHZYDWPBMWHY-VKHMYHEASA-N SMILEShelp_outline [NH3+][C@@H](CCS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27822 | RHEA:27823 | RHEA:27824 | RHEA:27825 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination.
Auger S., Yuen W.H., Danchin A., Martin-Verstraete I.
There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in Bacillus subtilis. The authors assigned a function to the metI (formerly yjcI) and metC (formerly yjcJ) genes of B. subtilis by complementing Escherichia coli metB and metC mutants, ... >> More
There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in Bacillus subtilis. The authors assigned a function to the metI (formerly yjcI) and metC (formerly yjcJ) genes of B. subtilis by complementing Escherichia coli metB and metC mutants, analysing the phenotype of B. subtilis metI and metC mutants, and carrying out enzyme activity assays. These genes encode polypeptides belonging to the cystathionine gamma-synthase family of proteins. Interestingly, the MetI protein has both cystathionine gamma-synthase and O-acetylhomoserine thiolyase activities, whereas the MetC protein is a cystathionine beta-lyase. In B. subtilis, the transsulfuration and the thiolation pathways are functional in vivo. Due to its dual activity, the MetI protein participates in both pathways. The metI and metC genes form an operon, the expression of which is subject to sulfur-dependent regulation. When the sulfur source is sulfate or cysteine the transcription of this operon is high. Conversely, when the sulfur source is methionine its transcription is low. An S-box sequence, which is located upstream of the metI gene, is involved in the regulation of the metIC operon. Northern blot experiments demonstrated the existence of two transcripts: a small transcript corresponding to the premature transcription termination at the terminator present in the S-box and a large one corresponding to transcription of the complete metIC operon. When methionine levels were limiting, the amount of the full-length transcript increased. These results substantiate a model of regulation by transcription antitermination. << Less
Microbiology 148:507-518(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Roles of O-acetyl-L-homoserine sulfhydrylases in micro-organisms.
Yamagata S.
O-Acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) is essential for certain micro-organisms, functioning as a homocysteine synthase in the pathway of methionine synthesis. It participates in an alternative pathway of L-homocysteine synthesis for those microbes in which homocysteine is synthesized ... >> More
O-Acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) is essential for certain micro-organisms, functioning as a homocysteine synthase in the pathway of methionine synthesis. It participates in an alternative pathway of L-homocysteine synthesis for those microbes in which homocysteine is synthesized mainly via cystathionine. The protein can also catalyze the de novo synthesis of L-cysteine and O-alkyl-L-homoserine in some microorganisms. The enzyme possibly recycles the methylthio group of methionine. << Less
-
Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product.
Shimizu H., Yamagata S., Masui R., Inoue Y., Shibata T., Yokoyama S., Kuramitsu S., Iwama T.
The oah1 gene of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned, sequenced, and overexpressed in Escherichia coli cells. The gene product having a high O-acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) activity was purified to homogeneity, with a recovery of approximate ... >> More
The oah1 gene of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned, sequenced, and overexpressed in Escherichia coli cells. The gene product having a high O-acetyl-L-homoserine sulfhydrylase (EC 4.2.99.10) activity was purified to homogeneity, with a recovery of approximately 40% and a purification ratio of 81-fold, both calculated from the cell-homogenate. The protein showed molecular masses of approximately 163000 (for the native form) and 47000 (for the subunit). The isoelectric point was pH 6.0. The optimum temperature and pH for the activity were approximately 70 degrees C and pH 7.8, respectively. The enzyme was also shown to be very stable at high temperature (90% activity remaining at 90 degrees C for 60 min at pH 7.8) and in a wide range of pH (pH 4-12 at room temperature). The absorption spectrum showed a peak at 425 nm, and hydroxylamine hydrochloride (0.1 mM) inhibited approximately 90% of the activity, suggesting formation of a Schiff base with pyridoxal 5'-phosphate. The enzyme showed an apparent K(m) value of 6.8 mM for O-acetyl-L-homoserine, a V(max) value of 165 micromol/min per mg of protein at a fixed sulfide concentration of 5 mM, and also an apparent K(m) value of approximately 1.3 mM for sulfide (with 25 mM acetylhomoserine). L-Methionine (1 mM) inhibited the enzyme activity by 67%. Based on these findings, it was discussed that this enzyme might be inactive under ordinary conditions but might become active as an alternative homocysteine synthase in T. thermophilus HB8, only under such conditions as deficiency in transsulfuration, bringing about a sufficient amount of sulfide available in the cell. << Less
Biochim. Biophys. Acta 1549:61-72(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.