Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 175 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline isopentenyl diphosphate Identifier CHEBI:128769 (Beilstein: 1824090) help_outline Charge -3 Formula C5H9O7P2 InChIKeyhelp_outline NUHSROFQTUXZQQ-UHFFFAOYSA-K SMILEShelp_outline CC(=C)CCOP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 38 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline all-trans-decaprenyl diphosphate Identifier CHEBI:60721 Charge -3 Formula C50H81O7P2 InChIKeyhelp_outline FSCYHDCTHRVSKN-CMVHWAPMSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27802 | RHEA:27803 | RHEA:27804 | RHEA:27805 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Characterization of solanesyl and decaprenyl diphosphate synthases in mice and humans.
Saiki R., Nagata A., Kainou T., Matsuda H., Kawamukai M.
The isoprenoid chain of ubiquinone (Q) is determined by trans-polyprenyl diphosphate synthase in micro-organisms and presumably in mammals. Because mice and humans produce Q9 and Q10, they are expected to possess solanesyl and decaprenyl diphosphate synthases as the determining enzyme for a type o ... >> More
The isoprenoid chain of ubiquinone (Q) is determined by trans-polyprenyl diphosphate synthase in micro-organisms and presumably in mammals. Because mice and humans produce Q9 and Q10, they are expected to possess solanesyl and decaprenyl diphosphate synthases as the determining enzyme for a type of ubiquinone. Here we show that murine and human solanesyl and decaprenyl diphosphate synthases are heterotetramers composed of newly characterized hDPS1 (mSPS1) and hDLP1 (mDLP1), which have been identified as orthologs of Schizosaccharomyces pombe Dps1 and Dlp1, respectively. Whereas hDPS1 or mSPS1 can complement the S. pombe dps1 disruptant, neither hDLP1 nor mDLP1 could complement the S. pombe dLp1 disruptant. Thus, only hDPS1 and mSPS1 are functional orthologs of SpDps1. Escherichia coli was engineered to express murine and human SpDps1 and/or SpDlp1 homologs and their ubiquinone types were determined. Whereas transformants expressing a single component produced only Q8 of E. coli origin, double transformants expressing mSPS1 and mDLP1 or hDPS1 and hDLP1 produced Q9 or Q10, respectively, and an in vitro activity of solanesyl or decaprenyl diphosphate synthase was verified. The complex size of the human and murine long-chain trans-prenyl diphosphate synthases, as estimated by gel-filtration chromatography, indicates that they consist of heterotetramers. Expression in E. coli of heterologous combinations, namely, mSPS1 and hDLP1 or hDPS1 and mDLP1, generated both Q9 and Q10, indicating both components are involved in determining the ubiquinone side chain. Thus, we identified the components of the enzymes that determine the side chain of ubiquinone in mammals and they resembles the S. pombe, but not plant or Saccharomyces cerevisiae, type of enzyme. << Less
FEBS J. 272:5606-5622(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Investigation of coenzyme Q biosynthesis in human fibroblast and HepG2 cells.
Tekle M., Turunen M., Dallner G., Chojnacki T., Swiezewska E.
Coenzyme Q (CoQ) deficiency occurs in genetic disorders, during aging and various diseases. Diagnosis requires skin fibroblasts in tissue culture. [3H]Mevalonate incorporation was appropriate to measure the rate of CoQ synthesis in fibroblasts and hepatoblastoma cells. [14C]p-Hydroxybenzoate had l ... >> More
Coenzyme Q (CoQ) deficiency occurs in genetic disorders, during aging and various diseases. Diagnosis requires skin fibroblasts in tissue culture. [3H]Mevalonate incorporation was appropriate to measure the rate of CoQ synthesis in fibroblasts and hepatoblastoma cells. [14C]p-Hydroxybenzoate had limited permeability, but it could be increased with Fugene and cyclodextrin. Inhibition of decaprenyl-4-hydroxybenzoate transferase results in the accumulation of decaprenyl diphosphate, an indicator of enzyme deficiency. Also, analysis of the corresponding mRNAs in this case is useful. In vitro assays to measure trans-prenyltransferase and decaprenyl-4-hydroxybenzoate transferase activities are not available. Neither measurement of methyltransferases is reliable in human cells. In vitro reconstruction of CoQ synthesis, in opposite to cholesterol synthesis, proved to be unsuccessful. Thus, the biochemical characterization of the CoQ biosynthetic system in human cells is restricted to a few reliable analytical procedures. << Less
J Biochem Biophys Methods 70:909-917(2008) [PubMed] [EuropePMC]