Reaction participants Show >> << Hide
- Name help_outline 2-deoxy-α-D-ribose 1-phosphate Identifier CHEBI:57259 Charge -2 Formula C5H9O7P InChIKeyhelp_outline KBDKAJNTYKVSEK-VPENINKCSA-L SMILEShelp_outline OC[C@H]1O[C@@H](C[C@@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-deoxy-D-ribose 5-phosphate Identifier CHEBI:62877 Charge -2 Formula C5H9O7P InChIKeyhelp_outline KKZFLSZAWCYPOC-PYHARJCCSA-L SMILEShelp_outline [C@H]1([C@H](CC(O1)O)O)COP([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27658 | RHEA:27659 | RHEA:27660 | RHEA:27661 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Phosphodeoxyribomutase from Escherichia coli. Purification and some properties.
Hammer-Jespersen K., Munch-Petersen A.
-
Molecular identification of mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase, two members of the alpha-D-phosphohexomutase family.
Maliekal P., Sokolova T., Vertommen D., Veiga-da-Cunha M., Van Schaftingen E.
The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified ... >> More
The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified phosphopentomutase from human erythrocytes and found it to copurify with a 68-kDa polypeptide that was identified by mass spectrometry as phosphoglucomutase 2 (PGM2), a protein of the alpha-d-phosphohexomutase family and sharing about 20% identity with mammalian phosphoglucomutase 1. Data base searches indicated that vertebrate genomes contained, in addition to PGM2, a homologue (PGM2L1, for PGM2-like 1) sharing about 60% sequence identity with this protein. Both PGM2 and PGM2L1 were overexpressed in Escherichia coli, purified, and their properties were studied. Using catalytic efficiency as a criterion, PGM2 acted more than 10-fold better as a phosphopentomutase (both on deoxyribose 1-phosphate and on ribose 1-phosphate) than as a phosphoglucomutase. PGM2L1 showed only low (<5%) phosphopentomutase and phosphoglucomutase activities compared with PGM2, but was about 5-20-fold better than the latter enzyme in catalyzing the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates. Furthermore, quantitative real-time PCR analysis indicated that PGM2L1 was mainly expressed in brain where glucose-1,6-bisphosphate synthase activity was previously shown to be particularly high. We conclude that mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase correspond to two closely related proteins, PGM2 and PGM2L1, encoded by two genes that separated early in vertebrate evolution. << Less
J. Biol. Chem. 282:31844-31851(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Phosphopentomutases. I. Identification of two activities in rabbit tissues.
Kammen H.O., Koo R.