Enzymes
UniProtKB help_outline | 963 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine 1-phosphate Identifier CHEBI:60119 Charge -1 Formula C18H37NO5P InChIKeyhelp_outline DUYSYHSSBDVJSM-KRWOKUGFSA-M SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine Identifier CHEBI:57756 Charge 1 Formula C18H38NO2 InChIKeyhelp_outline WWUZIQQURGPMPG-KRWOKUGFSA-O SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27518 | RHEA:27519 | RHEA:27520 | RHEA:27521 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of murine sphingosine-1-phosphate phosphohydrolase.
Le Stunff H., Peterson C., Thornton R., Milstien S., Mandala S.M., Spiegel S.
In the present study we have characterized mammalian sphingosine-1-phosphate phosphohydrolase (SPP1), an enzyme that specifically dephosphorylates sphingosine 1-phosphate (S1P) and which differs from previously described lipid phosphate phosphohydrolases. Based on sequence homology to murine SPP1, ... >> More
In the present study we have characterized mammalian sphingosine-1-phosphate phosphohydrolase (SPP1), an enzyme that specifically dephosphorylates sphingosine 1-phosphate (S1P) and which differs from previously described lipid phosphate phosphohydrolases. Based on sequence homology to murine SPP1, we cloned the human homolog. Transfection of human embryonic kidney 293 and Chinese hamster ovary cells with murine or human SPP1 resulted in marked increases in SPP1 activity in membrane fractions that were used to examine its enzymological properties. Unlike other known type 2 lipid phosphate phosphohydrolases (LPPs), but similar to the yeast orthologs, mammalian SPP1s are highly specific toward long chain sphingoid base phosphates and degrade S1P, dihydro-S1P, and phyto-S1P. SPP1 exhibited apparent Michaelis-Menten kinetics with S1P as substrate with an apparent K(m) of 38.5 microm and optimum activity at pH 7.5. Similar to other LPPs, SPP1 activity was also independent of any cation requirements, including Mg(2+), and was not inhibited by EDTA but was markedly inhibited by NaF and Zn(2+). However, SPP1 has some significantly different enzymological properties than the LPPs: the aliphatic cation propanolol, which is an effective inhibitor of type 1 phosphatidate phosphohydrolase activities and is only modestly effective as an inhibitor of LPPs, is a potent inhibitor of SPP1; the activity was partially sensitive to N-ethylmaleimide but not to the thioreactive compound iodoacetamide; and importantly, low concentrations of Triton X-100 and other non-ionic detergents were strongly inhibitory. Thus, in agreement with Cluster analysis which shows that outside of the consensus motif there is very little homology between SPP1s and the other type 2 lipid phosphohydrolases, SPP1s are significantly different and divergent from the mammalian LPPs. << Less
-
Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability.
Johnson K.R., Johnson K.Y., Becker K.P., Bielawski J., Mao C., Obeid L.M.
Sphingosine-1-phosphate (S1P) is a highly bioactive lipid that exerts numerous biological effects both intracellularly as a second messenger and extracellularly by binding to its G-protein-coupled receptors of the endothelial differentiation gene family (S1P receptors-(1-5)). Intracellularly, at l ... >> More
Sphingosine-1-phosphate (S1P) is a highly bioactive lipid that exerts numerous biological effects both intracellularly as a second messenger and extracellularly by binding to its G-protein-coupled receptors of the endothelial differentiation gene family (S1P receptors-(1-5)). Intracellularly, at least two enzymes, sphingosine kinase and S1P phosphatase, regulate the activity of S1P by governing the phosphorylation status of S1P. To study the regulation of S1P levels, we cloned the human isoform of S1P phosphatase 1 (hSPPase1). The hSPPase1 has 78% homology to the mouse SPPase at the amino acid level with 6-8 possible transmembrane domains. Confocal microscopy revealed green fluorescent protein-tagged hSPPase1, expressed in either MCF7 or HEK293 cells, co-localized to endoplasmic reticulum with calreticulin. According to Northern blot analysis, hSPPase1 is expressed in most tissues, with the strongest levels found in the highly vascular tissues of placenta and kidney. Transient overexpression of hSPPase1 exhibited a 2-fold increase in phosphatase activity against S1P and dihydro-S1P, indicating that the expressed protein was functional. Small interfering RNA (siRNA) knockdown of endogenous hSPPase1 drastically reduced hSPPase1 mRNA levels, as confirmed by reverse transcription PCR, and resulted in an overall 25% reduction of in vitro phosphatase activity in the membrane fractions. Sphingolipid mass measurements in hSPPase1 siRNA knockdown cells revealed a 2-fold increase of S1P levels and concomitant decrease in sphingosine. In vivo labeling of hSPPase1 siRNA-treated cells showed accumulation of S1P within cells, as well as significantly increased secretion of S1P into the media, indicating that hSPPase1 regulates secreted S1P. In addition, siRNA-induced knockdown of hSPPase1 endowed resistance to tumor necrosis factor-alpha and the chemotherapeutic agent daunorubicin. Collectively, these data suggest that regulation of hSPPase1 with the resultant changes in cellular and secreted S1P could have important implications to cell proliferation, angiogenesis, and apoptosis. << Less
J. Biol. Chem. 278:34541-34547(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3.
Jojima K., Edagawa M., Sawai M., Ohno Y., Kihara A.
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poor ... >> More
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity. << Less
FASEB J. 34:3318-3335(2020) [PubMed] [EuropePMC]
This publication is cited by 24 other entries.
-
Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2.
Ogawa C., Kihara A., Gokoh M., Igarashi Y.
Sphingosine 1-phosphate (S1P) is a bioactive lipid molecule that acts as both an extracellular signaling mediator and an intracellular second messenger. S1P is synthesized from sphingosine by sphingosine kinase and is degraded either by S1P lyase or by S1P phosphohydrolase. Recently, mammalian S1P ... >> More
Sphingosine 1-phosphate (S1P) is a bioactive lipid molecule that acts as both an extracellular signaling mediator and an intracellular second messenger. S1P is synthesized from sphingosine by sphingosine kinase and is degraded either by S1P lyase or by S1P phosphohydrolase. Recently, mammalian S1P phosphohydrolase (SPP1) was identified and shown to constitute a novel lipid phosphohydrolase family, the SPP family. In this study we have identified a second human S1P phosphohydrolase, SPP2, based on sequence homology to human SPP1. SPP2 exhibited high phosphohydrolase activity against S1P and dihydrosphingosine 1-phosphate. The dihydrosphingosine-1-phosphate phosphohydrolase activity was efficiently inhibited by excess S1P but not by lysophosphatidic acid, phosphatidic acid, or glycerol 3-phosphate, indicating that SPP2 is highly specific to sphingoid base 1-phosphates. Immunofluorescence microscopic analysis demonstrated that SPP2 is localized to the endoplasmic reticulum. Although the enzymatic properties and localization of SPP2 were similar to those of SPP1, the tissue-specific expression pattern of SPP2 was different from that of SPP1. Thus, SPP2 is another member of the SPP family that may play a role in attenuating intracellular S1P signaling. << Less
J. Biol. Chem. 278:1268-1272(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters.
Jasinska R., Zhang Q.-X., Pilquil C., Singh I., Xu J., Dewald J., Dillon D.A., Berthiaume L.G., Carman G.M., Waggoner D.W., Brindley D.N.
Lipid phosphate phosphohydrolase (LPP)-1 cDNA was cloned from a rat liver cDNA library. It codes for a 32-kDa protein that shares 87 and 82% amino acid sequence identities with putative products of murine and human LPP-1 cDNAs, respectively. Membrane fractions of rat2 fibroblasts that stably expre ... >> More
Lipid phosphate phosphohydrolase (LPP)-1 cDNA was cloned from a rat liver cDNA library. It codes for a 32-kDa protein that shares 87 and 82% amino acid sequence identities with putative products of murine and human LPP-1 cDNAs, respectively. Membrane fractions of rat2 fibroblasts that stably expressed mouse or rat LPP-1 exhibited 3.1-3. 6-fold higher specific activities for phosphatidate dephosphorylation compared with vector controls. Increases in the dephosphorylation of lysophosphatidate, ceramide 1-phosphate, sphingosine 1-phosphate and diacylglycerol pyrophosphate were similar to those for phosphatidate. Rat2 fibroblasts expressing mouse LPP-1 cDNA showed 1.6-2.3-fold increases in the hydrolysis of exogenous lysophosphatidate, phosphatidate and ceramide 1-phosphate compared with vector control cells. Recombinant LPP-1 was located partially in plasma membranes with its C-terminus on the cytosolic surface. Lysophosphatidate dephosphorylation was inhibited by extracellular Ca2+ and this inhibition was diminished by extracellular Mg2+. Changing intracellular Ca2+ concentrations did not alter exogenous lysophosphatidate dephosphorylation significantly. Permeabilized fibroblasts showed relatively little latency for the dephosphorylation of exogenous lysophosphatidate. LPP-1 expression decreased the activation of mitogen-activated protein kinase and DNA synthesis by exogenous lysophosphatidate. The product of LPP-1 cDNA is concluded to act partly to degrade exogenous lysophosphatidate and thereby regulate its effects on cell signalling. << Less
Biochem. J. 340:677-686(1999) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase.
Kai M., Wada I., Imai S., Sakane F., Kanoh H.
We obtained two human cDNA clones encoding phosphatidic acid phosphatase (PAP) isozymes named PAP-2a (Mr = 32,158) and -2b (Mr = 35, 119), both of which contained six putative transmembrane domains. Both enzymes were glycosylated and cleaved by N-glycanase and endo-beta-galactosidase, thus suggest ... >> More
We obtained two human cDNA clones encoding phosphatidic acid phosphatase (PAP) isozymes named PAP-2a (Mr = 32,158) and -2b (Mr = 35, 119), both of which contained six putative transmembrane domains. Both enzymes were glycosylated and cleaved by N-glycanase and endo-beta-galactosidase, thus suggesting their post-Golgi localization. PAP-2a and -2b shared 47% identical sequence and were judged to be the human counterparts of the previously sequenced mouse 35-kDa PAP(83% identity) and rat Dri42 protein (94% identity), respectively. Furthermore, the sequences of both PAPs were 34-39% identical to that of Drosophila Wunen protein. In view of the functions ascribed to Wunen and Dri42 in germ cell migration and epithelial differentiation, respectively, these findings unexpectedly suggest critical roles of PAP isoforms in cell growth and differentiation. Although the two PAPs hydrolyzed lysophosphatidate and ceramide-1-phosphate in addition to phosphatidate, the hydrolysis of sphingosine-1-phosphate was detected only for PAP-2b. PAP-2b was expressed almost ubiquitously in all human tissues examined, whereas the expression of PAP-2a was relatively variable, being extremely low in the placenta and thymus. In HeLa cells, the transcription of PAP-2a was not affected by different stimuli, whereas PAP-2b was induced (up to 3-fold) by epidermal growth factor. These findings indicate that despite structural similarities, the two PAP isozymes may play distinct functions through their different patterns of substrate utilization and transcriptional regulation. << Less
J. Biol. Chem. 272:24572-24578(1997) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.