Enzymes
UniProtKB help_outline | 7,939 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glycero-β-D-manno-heptose 7-phosphate Identifier CHEBI:60204 Charge -2 Formula C7H13O10P InChIKeyhelp_outline SDADNVAZGVDAIM-ZUHYCWGWSA-L SMILEShelp_outline [H][C@@]1(O[C@@H](O)[C@@H](O)[C@@H](O)[C@@H]1O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glycero-β-D-manno-heptose 1,7-bisphosphate Identifier CHEBI:60208 Charge -4 Formula C7H12O13P2 InChIKeyhelp_outline LMTGTTLGDUACSJ-QTNLNCNHSA-J SMILEShelp_outline [H][C@@]1(O[C@@H](OP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@@H]1O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27473 | RHEA:27474 | RHEA:27475 | RHEA:27476 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).
Wang L., Huang H., Nguyen H.H., Allen K.N., Mariano P.S., Dunaway-Mariano D.
D-Glycero-d-manno-heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the d-glycero-d-manno-heptose-1alpha-GDP ... >> More
D-Glycero-d-manno-heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the histidinol-phosphate phosphatase (HisB) subfamily of the haloalkanoic acid dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical pathways in bacteria: the d-glycero-d-manno-heptose-1alpha-GDP pathway (in S-layer glycoprotein biosynthesis) and the l-glycero-d-manno-heptose-1beta-ADP pathway (in lipid A biosynthesis). Herein, we report the comparative analysis of substrate recognition in selected GmhB orthologs. The substrate specificity of the l-glycero-d-manno-heptose-1beta-ADP pathway GmhB from Escherichia coli K-12 was evaluated using hexose and heptose bisphosphates, histidinol phosphate, and common organophosphate metabolites. Only d-glycero-d-manno-heptose 1beta,7-bisphosphate (k(cat)/K(m) = 7 x 10(6) M(-1) s(-1)) and d-glycero-d-manno-heptose 1alpha,7-bisphosphate (k(cat)/K(m) = 7 x 10(4) M(-1) s(-1)) displayed physiologically significant substrate activity. (31)P NMR analysis demonstrated that E. coli GmhB selectively removes the C(7) phosphate. Steady-state kinetic inhibition studies showed that d-glycero-d-manno-heptose 1beta-phosphate (K(is) = 60 microM, and K(ii) = 150 microM) and histidinol phosphate (K(is) = 1 mM, and K(ii) = 6 mM), while not hydrolyzed, do in fact bind to E. coli GmhB, which leads to the conclusion that nonproductive binding contributes to substrate discrimination. High catalytic efficiency and a narrow substrate range are characteristic of a well-evolved metabolic enzyme, and as such, E. coli GmhB is set apart from most HAD phosphatases (which are typically inefficient and promiscuous). The specialization of the biochemical function of GmhB was examined by measuring the kinetic constants for hydrolysis of the alpha- and beta-anomers of d-glycero-d-manno-heptose 1beta,7-bisphosphate catalyzed by the GmhB orthologs of the l-glycero-d-manno-heptose 1beta-ADP pathways operative in Bordetella bronchiseptica and Mesorhizobium loti and by the GmhB of the d-glycero-d-manno-heptose 1alpha-GDP pathway operative in Bacteroides thetaiotaomicron. The results show that although each of these representatives possesses physiologically significant catalytic activity toward both anomers, each displays substantial anomeric specificity. Like E. coli GmhB, B. bronchiseptica GmhB and M. loti GmhB prefer the beta-anomer, whereas B. thetaiotaomicron GmhB is selective for the alpha-anomer. By determining the anomeric configuration of the physiological substrate (d-glycero-d-manno-heptose 1,7-bisphosphate) for each of the four GmhB orthologs, we discovered that the anomeric specificity of GmhB correlates with that of the pathway kinase. The conclusion drawn from this finding is that the evolution of the ancestor to GmhB in the HisB subfamily provided for specialization toward two distinct biochemical functions. << Less
Biochemistry 49:1072-1081(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Functional analysis of the glycero-manno-heptose 7-phosphate kinase domain from the bifunctional HldE protein, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis.
McArthur F., Andersson C.E., Loutet S., Mowbray S.L., Valvano M.A.
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP- ... >> More
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity. << Less