Enzymes
UniProtKB help_outline | 3,222 proteins |
Enzyme classes help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline xylitol Identifier CHEBI:17151 (Beilstein: 1720523; CAS: 87-99-0) help_outline Charge 0 Formula C5H12O5 InChIKeyhelp_outline HEBKCHPVOIAQTA-SCDXWVJYSA-N SMILEShelp_outline OC[C@H](O)[C@@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-xylose Identifier CHEBI:53455 (Beilstein: 1280757; CAS: 58-86-6) help_outline Charge 0 Formula C5H10O5 InChIKeyhelp_outline SRBFZHDQGSBBOR-IOVATXLUSA-N SMILEShelp_outline O[C@@H]1COC(O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27441 | RHEA:27442 | RHEA:27443 | RHEA:27444 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Purification, crystallization and preliminary X-ray crystallographic analysis of xylose reductase from Candida tropicalis.
Chen L.C., Huang S.C., Chuankhayan P., Chen C.D., Huang Y.C., Jeyakanthan J., Pang H.F., Men L.C., Chen Y.C., Wang Y.K., Liu M.Y., Wu T.K., Chen C.J.
Xylose reductase (XR), which requires NADPH as a co-substrate, catalyzes the reduction of D-xylose to xylitol, which is the first step in the metabolism of D-xylose. The detailed three-dimensional structure of XR will provide a better understanding of the biological significance of XR in the effic ... >> More
Xylose reductase (XR), which requires NADPH as a co-substrate, catalyzes the reduction of D-xylose to xylitol, which is the first step in the metabolism of D-xylose. The detailed three-dimensional structure of XR will provide a better understanding of the biological significance of XR in the efficient production of xylitol from biomass. XR of molecular mass 36.6 kDa from Candida tropicalis was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data from C. tropicalis XR crystals at 2.91 A resolution, the unit cell belongs to space group P3(1) or P3(2). Preliminary analysis indicated the presence of four XR molecules in the asymmetric unit, with 68.0% solvent content. << Less
Acta Crystallogr Sect F Struct Biol Cryst Commun 65:419-421(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme.
Neuhauser W., Haltrich D., Kulbe K.D., Nidetzky B.
During growth on d-xylose the yeast Candida tenuis produces one aldose reductase that is active with both NADPH and NADH as coenzyme. This enzyme has been isolated by dye ligand and anion-exchange chromatography in yields of 76%. Aldose reductase consists ofa single 43 kDa polypeptide with an isoe ... >> More
During growth on d-xylose the yeast Candida tenuis produces one aldose reductase that is active with both NADPH and NADH as coenzyme. This enzyme has been isolated by dye ligand and anion-exchange chromatography in yields of 76%. Aldose reductase consists ofa single 43 kDa polypeptide with an isoelectric point of 4.70. Initial velocity, product inhibition and binding studies are consistent with a compulsory-ordered, ternary-complex mechanism with coenzyme binding first and leaving last. The catalytic efficiency (kcat/Km) in d-xylose reduction at pH 7 is more than 60-fold higher than that in xylitol oxidation and reflects significant differences in the corresponding catalytic centre activities as well as apparent substrate-binding constants. The enzyme prefers NADP(H) approx. 2-fold to NAD(H), which is largely due to better apparent binding of the phosphorylated form of the coenzyme. NADP+ is a potent competitive inhibitor of the NADH-linked aldehyde reduction (Ki 1.5 microM), whereas NAD+ is not. Unlike mammalian aldose reductase, the enzyme from C. tenuis is not subject to oxidation-induced activation. Evidence of an essential lysine residue located in or near the coenzyme binding site has been obtained from chemical modification of aldose reductase with pyridoxal 5'-phosphate. The results are discussed in the context of a comparison of the enzymic properties of yeast and mammalian aldose reductase. << Less
Biochem J 326:683-692(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.