Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 3-(7-chloroindol-3-yl)-2-iminopropanoate Identifier CHEBI:59194 Charge 0 Formula C11H9ClN2O2 InChIKeyhelp_outline RZLZHCIMBPNTHP-UHFFFAOYSA-N SMILEShelp_outline [O-]C(=O)C(=[NH2+])Cc1c[nH]c2c(Cl)cccc12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dichlorochromopyrrolate Identifier CHEBI:59198 Charge -2 Formula C22H11Cl2N3O4 InChIKeyhelp_outline OAMCCJASDLMTOO-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)c1[nH]c(C([O-])=O)c(-c2c[nH]c3c(Cl)cccc23)c1-c1c[nH]c2c(Cl)cccc12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27393 | RHEA:27394 | RHEA:27395 | RHEA:27396 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Evidence for catalytic intermediates involved in generating the chromopyrrolic acid scaffold of rebeccamycin by RebO and RebD.
Spolitak T., Ballou D.P.
We provide the first experimental evidence for intermediates being involved in catalysis by RebD in generating the chromopyrrolic acid (CPA) scaffold of rebeccamycin. In the presence of its substrates (indole pyruvate imine - IPAI - and H2O2 both produced by the flavoprotein oxidase RebO that oxid ... >> More
We provide the first experimental evidence for intermediates being involved in catalysis by RebD in generating the chromopyrrolic acid (CPA) scaffold of rebeccamycin. In the presence of its substrates (indole pyruvate imine - IPAI - and H2O2 both produced by the flavoprotein oxidase RebO that oxidizes tryptophan), RebD reacts as a peroxidase forming two IPAI radicals that recombine as a C-C bond in the CPA. When catalase is included to remove H2O2, CPA can still be formed because the IPAI rapidly reduces RebD, which reacts with O2, utilizing oxidase-peroxidase chemistry to produce CPA. Reduced RebD can also react with H2O2 forming Cpd II directly, which can oxidize IPAI. Stopped-flow spectrophotometric studies demonstrated that during the reaction of RebO and RebD with Trp and oxygen, a species with a red-shifted Soret band at 424.5 nm appeared. This species can react with either guaiacol or ABTS to form ferric RebD, suggesting that it is Cpd II of RebD involved in the formation of CPA. In summary, the studies reveal new and unusual aspects peroxidase and peroxygenase chemistry used by RebD in catalyzing carbon-carbon oxidative coupling reactions that are involved in biosynthesis of indolocarbazoles. << Less
Arch. Biochem. Biophys. 573:111-119(2015) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD.
Howard-Jones A.R., Walsh C.T.
During the biosynthesis of the fused six-ring indolocarbazole scaffolds of rebeccamycin and staurosporine, two molecules of L-tryptophan are processed to a pyrrole-containing five-ring intermediate known as chromopyrrolic acid. We report here the heterologous expression of RebO and RebD from the r ... >> More
During the biosynthesis of the fused six-ring indolocarbazole scaffolds of rebeccamycin and staurosporine, two molecules of L-tryptophan are processed to a pyrrole-containing five-ring intermediate known as chromopyrrolic acid. We report here the heterologous expression of RebO and RebD from the rebeccamycin biosynthetic pathway in Escherichia coli, and tandem action of these two enzymes to construct the dicarboxypyrrole ring of chromopyrrolic acid. Chromopyrrolic acid is oxidized by six electrons compared to the starting pair of L-tryptophan molecules. RebO is an L-tryptophan oxidase flavoprotein and RebD a heme protein dimer with both catalase and chromopyrrolic acid synthase activity. Both enzymes require dioxygen as a cosubstrate. RebD on its own is incompetent with L-tryptophan but will convert the imine of indole-3-pyruvate to chromopyrrolic acid. It displays a substrate preference for two molecules of indole-3-pyruvic acid imine, necessitating a net two-electron oxidation to give chromopyrrolic acid. << Less
Biochemistry 44:15652-15663(2005) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Enzymatic assembly of the bis-indole core of rebeccamycin.
Nishizawa T., Gruschow S., Jayamaha D.H., Nishizawa-Harada C., Sherman D.H.
Rebeccamycin is a member of the family of indolocarbazole antibiotics with broad spectrum antitumor activity. The indolocarbazole framework is derived from two molecules of tryptophan, but very little is known about the enzymes involved in rebeccamycin biosynthesis. Here, we show that RebD is resp ... >> More
Rebeccamycin is a member of the family of indolocarbazole antibiotics with broad spectrum antitumor activity. The indolocarbazole framework is derived from two molecules of tryptophan, but very little is known about the enzymes involved in rebeccamycin biosynthesis. Here, we show that RebD is responsible for all catalytic steps forming the central pyrrole ring of chlorochromopyrrolic acid from two molecules of chloroindolepyruvic acid. This transformation does not require any additional cofactors and constitutes the first step of bis-indole formation in the biosynthesis of rebeccamycin. << Less
J Am Chem Soc 128:724-725(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
Multi-step reaction: RHEA:51028 and RHEA:51032.