Enzymes
UniProtKB help_outline | 1,516 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2R)-2,3-bisphosphoglycerate Identifier CHEBI:58248 Charge -5 Formula C3H3O10P2 InChIKeyhelp_outline XOHUEYCVLUUEJJ-UWTATZPHSA-I SMILEShelp_outline [O-]C(=O)[C@@H](COP([O-])([O-])=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2R)-2-phosphoglycerate Identifier CHEBI:58289 Charge -3 Formula C3H4O7P InChIKeyhelp_outline GXIURPTVHJPJLF-UWTATZPHSA-K SMILEShelp_outline OC[C@@H](OP([O-])([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27381 | RHEA:27382 | RHEA:27383 | RHEA:27384 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase.
Craxton A., Caffrey J.J., Burkhart W., Safrany S.T., Shears S.B.
The characterization of the multiple inositol polyphosphate phosphatase (MIPP) is fundamental to our understanding of how cells control the signalling activities of 'higher' inositol polyphosphates. We now describe our isolation of a 2.3 kb cDNA clone of a rat hepatic form of MIPP. The predicted a ... >> More
The characterization of the multiple inositol polyphosphate phosphatase (MIPP) is fundamental to our understanding of how cells control the signalling activities of 'higher' inositol polyphosphates. We now describe our isolation of a 2.3 kb cDNA clone of a rat hepatic form of MIPP. The predicted amino acid sequence of MIPP includes an 18 amino acid region that aligned with approximately 60% identity with the catalytic domain of a fungal inositol hexakisphosphate phosphatase (phytase A); the similarity encompassed conservation of the RHGXRXP signature of the histidine acid phosphatase family. A histidine-tagged, truncated form of MIPP was expressed in Escherichia coli and the enzymic specificity of the recombinant protein was characterized: Ins(1,3,4,5,6)P5 was hydrolysed, first to Ins(1,4,5,6)P4 and then to Ins(1,4,5)P3, by consecutive 3- and 6-phosphatase activities. Inositol hexakisphosphate was catabolized without specificity towards a particular phosphate group, but in contrast, MIPP only removed the beta-phosphate from the 5-diphosphate group of diphosphoinositol pentakisphosphate. These data, which are consistent with the substrate specificities of native (but not homogeneous) MIPP isolated from rat liver, provide the first demonstration that a single enzyme is responsible for this diverse range of specific catalytic activities. A 2.5 kb transcript of MIPP mRNA was present in all rat tissues that were examined, but was most highly expressed in kidney and liver. The predicted C-terminus of MIPP is comprised of the tetrapeptide SDEL, which is considered a signal for retaining soluble proteins in the lumen of the endoplasmic reticulum; the presence of this sequence provides a molecular explanation for our earlier biochemical demonstration that the endoplasmic reticulum contains substantial MIPP activity [Ali, Craxton and Shears (1993) J. Biol. Chem. 268, 6161-6167]. << Less
Biochem. J. 328:75-81(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt.
Cho J., King J.S., Qian X., Harwood A.J., Shears S.B.
The Rapoport-Luebering glycolytic bypass comprises evolutionarily conserved reactions that generate and dephosphorylate 2,3-bisphosphoglycerate (2,3-BPG). For >30 years, these reactions have been considered the responsibility of a single enzyme, the 2,3-BPG synthase/2-phosphatase (BPGM). Here, we ... >> More
The Rapoport-Luebering glycolytic bypass comprises evolutionarily conserved reactions that generate and dephosphorylate 2,3-bisphosphoglycerate (2,3-BPG). For >30 years, these reactions have been considered the responsibility of a single enzyme, the 2,3-BPG synthase/2-phosphatase (BPGM). Here, we show that Dictyostelium, birds, and mammals contain an additional 2,3-BPG phosphatase that, unlike BPGM, removes the 3-phosphate. This discovery reveals that the glycolytic pathway can bypass the formation of 3-phosphoglycerate, which is a precursor for serine biosynthesis and an activator of AMP-activated protein kinase. Our 2,3-BPG phosphatase activity is encoded by the previously identified gene for multiple inositol polyphosphate phosphatase (MIPP1), which we now show to have dual substrate specificity. By genetically manipulating Mipp1 expression in Dictyostelium, we demonstrated that this enzyme provides physiologically relevant regulation of cellular 2,3-BPG content. Mammalian erythrocytes possess the highest content of 2,3-BPG, which controls oxygen binding to hemoglobin. We determined that total MIPP1 activity in erythrocytes at 37 degrees C is 0.6 mmol 2,3-BPG hydrolyzed per liter of cells per h, matching previously published estimates of the phosphatase activity of BPGM. MIPP1 is active at 4 degrees C, revealing a clinically significant contribution to 2,3-BPG loss during the storage of erythrocytes for transfusion. Hydrolysis of 2,3-BPG by human MIPP1 is sensitive to physiologic alkalosis; activity decreases 50% when pH rises from 7.0 to 7.4. This phenomenon provides a homeostatic mechanism for elevating 2,3-BPG levels, thereby enhancing oxygen release to tissues. Our data indicate greater biological significance of the Rapoport-Luebering shunt than previously considered. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:5998-6003(2008) [PubMed] [EuropePMC]
-
Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19.
Chi H., Tiller G.E., Dasouki M.J., Romano P.R., Wang J., O'keefe R.J., Puzas J.E., Rosier R.N., Reynolds P.R.
Multiple inositol polyphosphate phosphatase is the only enzyme known to hydrolyze the abundant metabolites inositol pentakisphosphate and inositol hexakisphosphate. We have previously demonstrated that the chick homolog of multiple inositol polyphosphate phosphatase, designated HiPER1, has a role ... >> More
Multiple inositol polyphosphate phosphatase is the only enzyme known to hydrolyze the abundant metabolites inositol pentakisphosphate and inositol hexakisphosphate. We have previously demonstrated that the chick homolog of multiple inositol polyphosphate phosphatase, designated HiPER1, has a role in growth plate chondrocyte differentiation. The relationship of these enzymes to intracellular signaling is obscure, and as part of our investigation we have examined the murine ((MMU)Minpp1) and human ((HSA)MINPP1) homologs. Northern blot analysis demonstrated expression of ((MMU)Minpp1 in a variety of mouse tissues, comparable to the expression of other mammalian homologs, but less restricted than the expression of HiPER1 in chick. A purified (MMU)Minpp1 fusion protein cleaved phosphate from inositol (1,3,4,5)-tetrakisphosphate and para-nitrophenyl phosphate. When the presumptive active site histidine was altered to alanine by site-directed mutagenesis, enzyme activity was abolished, confirming the classification of (MMU)Minpp1 as a histidine phosphatase. The amino acid sequences of the murine and human MINPP proteins share >80% identity with the rat enzyme and >56% identity with HiPER1, with conservation of the C-terminal consensus sequence that retains proteins in the endoplasmic reticulum. The intron/exon structure of the mammalian (MMU)Minpp1 and (HSA)MINPP1 genes is also conserved compared to the chick HiPER1 gene. Sequence analysis of plant and fruit fly MINPP homologs supports the hypothesis that the MINPP enzymes constitute a distinct evolutionary group within the histidine phosphatase family. We have mapped (HSA)MINPP1 to human chromosome 10q23 by fluorescence in situ hybridization, YAC screening, and radiation hybrid mapping. This assignment places (HSA)MINPP1 in a region of chromosome 10 that is frequently mutated in human cancers and places (HSA)MINPP1 proximal to the tumor suppressor PTEN, which maps to 10q23.3. Using a radiation hybrid panel, we localized (MMU)Minpp1 to a region of mouse chromosome 19 that includes the murine homolog of Pten. The evolutionary conservation of this novel enzyme within the inositol polyphosphate pathway suggests a significant role for multiple inositol polyphosphate phosphatase throughout higher eukaryotes. << Less