Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27290 | RHEA:27291 | RHEA:27292 | RHEA:27293 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.
Gladyshev V.N., Boyington J.C., Khangulov S.V., Grahame D.A., Stadtman T.C., Sun P.D.
The selenocysteine-containing formate dehydrogenase H (FDH) is an 80-kDa component of the Escherichia coli formate-hydrogen lyase complex. The molybdenum-coordinated selenocysteine is essential for catalytic activity of the native enzyme. FDH in dilute solutions (30 microg/ml) was rapidly inactiva ... >> More
The selenocysteine-containing formate dehydrogenase H (FDH) is an 80-kDa component of the Escherichia coli formate-hydrogen lyase complex. The molybdenum-coordinated selenocysteine is essential for catalytic activity of the native enzyme. FDH in dilute solutions (30 microg/ml) was rapidly inactivated at basic pH or in the presence of formate under anaerobic conditions, but at higher enzyme concentrations (>/=3 mg/ml) the enzyme was relatively stable. The formate-reduced enzyme was extremely sensitive to air inactivation under all conditions examined. Active formate-reduced FDH was crystallized under anaerobic conditions in the presence of ammonium sulfate and PEG 400. The crystals diffract to 2.6 A resolution and belong to a space group of P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions a = b = 146.1 A and c = 82.7 A. There is one monomer of FDH per crystallographic asymmetric unit. Similar diffraction quality crystals of oxidized FDH could be obtained by oxidation of crystals of formate-reduced enzyme with benzyl viologen. By EPR spectroscopy, a signal of a single reduced FeS cluster was found in a crystal of reduced FDH, but not in a crystal of oxidized enzyme, whereas Mo(V) signal was not detected in either form of crystalline FDH. This suggests that Mo(IV)- and the reduced FeS cluster-containing form of the enzyme was crystallized and this could be converted into Mo(VI)- and oxidized FeS cluster form upon oxidation. A procedure that combines anaerobic and cryocrystallography has been developed that is generally applicable to crystallographic studies of oxygen-sensitive enzymes. These data provide the first example of crystallization of a substrate-reduced form of a Se- and Mo-containing enzyme. << Less
-
Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component.
Axley M.J., Grahame D.A., Stadtman T.C.
The formate-hydrogen lyase complex of Escherichia coli decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. The complex consists of two separable enzymatic activities: a formate dehydrogenase and a hydrogenase. The formate ... >> More
The formate-hydrogen lyase complex of Escherichia coli decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. The complex consists of two separable enzymatic activities: a formate dehydrogenase and a hydrogenase. The formate dehydrogenase component (FDHH) of the formate-hydrogen lyase complex was purified to near homogeneity in two column chromatographic steps. The purified enzyme was composed of a single polypeptide of molecular weight 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Metal analysis showed each mole of enzyme contained 3.3 g atoms of iron. Denaturation of FDHH released a compound which, when oxidized, displayed a fluorescence spectrum similar to that of the molybdopterin cofactor found in certain other enzymes. The enzyme contained selenium in the form of selenocysteine as determined by radioactive labeling of the enzyme with 75Se and amino acid analysis. FDHH activity was maximal between pH 7.5 and 8.5; however, the enzyme was maximally stable at pH 5.3-6.4 and highly unstable above pH 7.5. Nitrate and nitrite salts caused a drastic reduction in activity. Although azide inhibited FDHH activity, it also protected the enzyme from inactivation by oxygen. << Less
-
Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer.
Khangulov S.V., Gladyshev V.N., Dismukes G.C., Stadtman T.C.
Formate dehydrogenase H, FDH(Se), from Escherichia coli contains a molybdopterin guanine dinucleotide cofactor and a selenocysteine residue in the polypeptide. Oxidation of 13C-labeled formate in 18O-enriched water catalyzed by FDH(Se) produces 13CO2 gas that contains no 18O-label, establishing th ... >> More
Formate dehydrogenase H, FDH(Se), from Escherichia coli contains a molybdopterin guanine dinucleotide cofactor and a selenocysteine residue in the polypeptide. Oxidation of 13C-labeled formate in 18O-enriched water catalyzed by FDH(Se) produces 13CO2 gas that contains no 18O-label, establishing that the enzyme is not a member of the large class of Mo-pterin-containing oxotransferases which incorporate oxygen from water into product. An unusual Mo center of the active site is coordinated in the reduced Mo(IV) state in a square pyramidal geometry to the four equatorial dithiolene sulfur atoms from a pair of pterin cofactors and a Se atom of the selenocysteine-140 residue [Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C., and Sun, P. D. (1997) Science 275, 1305-1308]. EPR spectroscopy of the Mo(V) state indicates a square pyramidal geometry analogous to that of the Mo(IV) center. The strongest ligand field component is likely the single axial Se atom producing a ground orbital configuration Mo(dxy). The Mo-Se bond was estimated to be covalent to the extent of 17-27% of the unpaired electron spin density residing in the valence 4s and 4p selenium orbitals, based on comparison of the scalar and dipolar hyperfine components to atomic 77Se. Two electron oxidation of formate by the Mo(VI) state converts Mo to the reduced Mo(IV) state with the formate proton, Hf+, transferring to a nearby base Y-. Transfer of one electron to the Fe4S4 center converts Mo(IV) to the EPR detectable Mo(V) state. The Y-is located within magnetic contact to the [Mo-Se] center, as shown by its strong dipolar 1Hf hyperfine couplings. Photolysis of the formate-induced Mo(V) state abolishes the 1Hf hyperfine splitting from YHf, suggesting photoisomerizaton of this group or phototransfer of the proton to a more distant proton acceptor group A-. The minor effect of photolysis on the 77Se-hyperfine interaction with [77Se] selenocysteine suggests that the Y-group is not the Se atom, but instead might be the imidazole ring of the His141 residue which is located in the putative substrate-binding pocket close to the [Mo-Se] center. We propose that the transfer of Hf+ from formate to the active site base Y-is thermodynamically coupled to two-electron oxidation of the formate molecule, thereby facilitating formation of CO2. Under normal physiological conditions, when electron flow is not limited by the terminal acceptor of electrons, the energy released upon oxidation of Mo(IV) centers by the Fe4S4 is used for deprotonation of YHf and transfer of Hf+ against the thermodynamic potential. << Less