Enzymes
UniProtKB help_outline | 2,453 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3-hydroxypropanoyl-CoA Identifier CHEBI:58528 Charge -4 Formula C24H36N7O18P3S InChIKeyhelp_outline BERBFZCUSMQABM-IEXPHMLFSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCO 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acryloyl-CoA Identifier CHEBI:57367 Charge -4 Formula C24H34N7O17P3S InChIKeyhelp_outline POODSGUMUCVRTR-IEXPHMLFSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=C 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26518 | RHEA:26519 | RHEA:26520 | RHEA:26521 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.
Teufel R., Kung J.W., Kockelkorn D., Alber B.E., Fuchs G.
A 3-hydroxypropionate/4-hydroxybutyrate cycle operates in autotrophic CO(2) fixation in various Crenarchaea, as studied in some detail in Metallosphaera sedula. This cycle and the autotrophic 3-hydroxypropionate cycle in Chloroflexus aurantiacus have in common the conversion of acetyl-coenzyme A ( ... >> More
A 3-hydroxypropionate/4-hydroxybutyrate cycle operates in autotrophic CO(2) fixation in various Crenarchaea, as studied in some detail in Metallosphaera sedula. This cycle and the autotrophic 3-hydroxypropionate cycle in Chloroflexus aurantiacus have in common the conversion of acetyl-coenzyme A (CoA) and two bicarbonates via 3-hydroxypropionate to succinyl-CoA. Both cycles require the reductive conversion of 3-hydroxypropionate to propionyl-CoA. In M. sedula the reaction sequence is catalyzed by three enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the CoA- and MgATP-dependent formation of 3-hydroxypropionyl-CoA. The next two enzymes were purified from M. sedula or Sulfolobus tokodaii and studied. 3-Hydroxypropionyl-CoA dehydratase, a member of the enoyl-CoA hydratase family, eliminates water from 3-hydroxypropionyl-CoA to form acryloyl-CoA. Acryloyl-CoA reductase, a member of the zinc-containing alcohol dehydrogenase family, reduces acryloyl-CoA with NADPH to propionyl-CoA. Genes highly similar to the Metallosphaera CoA synthetase, dehydratase, and reductase genes were found in autotrophic members of the Sulfolobales. The encoded enzymes are only distantly related to the respective three enzyme domains of propionyl-CoA synthase from C. aurantiacus, where this trifunctional enzyme catalyzes all three reactions. This indicates that the autotrophic carbon fixation cycles in Chloroflexus and in the Sulfolobales evolved independently and that different genes/enzymes have been recruited in the two lineages that catalyze the same kinds of reactions. << Less
J. Bacteriol. 191:4572-4581(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion.
Yamada K., Aiba K., Kitaura Y., Kondo Y., Nomura N., Nakamura Y., Fukushi D., Murayama K., Shimomura Y., Pitt J., Yamaguchi S., Yokochi K., Wakamatsu N.
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been ... >> More
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been determined. The objective of this report is to characterise ECHS1 and a mild form of its deficiency biochemically, and to determine the candidate metabolic product that can be efficiently used for neonatal diagnosis.<h4>Methods</h4>We conducted a detailed clinical, molecular genetics, biochemical and metabolic analysis of sibling patients with ECHS1 deficiency. Moreover, we purified human ECHS1, and determined the substrate specificity of ECHS1 for five substrates via different metabolic pathways.<h4>Results</h4>Human ECHS1 catalyses the hydration of five substrates via different metabolic pathways, with the highest specificity for crotonyl-CoA and the lowest specificity for tiglyl-CoA. The patients had relatively high (∼7%) residual ECHS1 enzyme activity for crotonyl-CoA and methacrylyl-CoA caused by the compound heterozygous mutations (c.176A>G, (p.N59S) and c.413C>T, (p.A138V)) with normal mitochondrial complex I-IV activities. Affected patients excrete large amounts of N-acetyl-S-(2-carboxypropyl)cysteine, a metabolite of methacrylyl-CoA.<h4>Conclusions</h4>Laboratory data and clinical features demonstrated that the patients have a mild form of ECHS1 deficiency harbouring defective valine catabolic and β-oxidation pathways. N-Acetyl-S-(2-carboxypropyl) cysteine level was markedly high in the urine of the patients, and therefore, N-acetyl-S-(2-carboxypropyl)cysteine was regarded as a candidate metabolite for the diagnosis of ECHS1 deficiency. This metabolite is not part of current routine metabolic screening protocols, and its inclusion, therefore, holds immense potential in accurate diagnosis. << Less
J. Med. Genet. 52:691-698(2015) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Berg I.A., Kockelkorn D., Buckel W., Fuchs G.
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as t ... >> More
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling. << Less
Science 318:1782-1786(2007) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.