Enzymes
UniProtKB help_outline | 93 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O-phospho-L-serine Identifier CHEBI:57524 Charge -2 Formula C3H6NO6P InChIKeyhelp_outline BZQFBWGGLXLEPQ-REOHCLBHSA-L SMILEShelp_outline [NH3+][C@@H](COP([O-])([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sulfite Identifier CHEBI:17359 (CAS: 14265-45-3) help_outline Charge -2 Formula O3S InChIKeyhelp_outline LSNNMFCWUKXFEE-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 60 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteate Identifier CHEBI:58090 Charge -1 Formula C3H6NO5S InChIKeyhelp_outline XVOYSCVBGLVSOL-REOHCLBHSA-M SMILEShelp_outline [NH3+][C@@H](CS([O-])(=O)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26486 | RHEA:26487 | RHEA:26488 | RHEA:26489 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline |
Publications
-
Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase.
Graham D.E., Taylor S.M., Wolf R.Z., Namboori S.C.
The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate ... >> More
The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea. << Less
Biochem. J. 424:467-478(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.