Reaction participants Show >> << Hide
-
Name help_outline
a 2-demethylmenaquinone
Identifier
CHEBI:28192
Charge
0
Formula
C10H6O2(C5H8)n
Search links
Involved in 6 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9536Polymer name: a 2-demethylmenaquinonePolymerization index help_outline nFormula C10H6O2(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a menaquinone
Identifier
CHEBI:16374
(CAS: 11032-49-8)
help_outline
Charge
0
Formula
(C5H8)nC11H8O2
Search links
Involved in 47 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9537Polymer name: a menaquinonePolymerization index help_outline nFormula C11H8O2(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26466 | RHEA:26467 | RHEA:26468 | RHEA:26469 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline |
Publications
-
A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene.
Lee P.T., Hsu A.Y., Ha H.T., Clarke C.F.
Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been ... >> More
Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been mapped to 86 min on the chromosome, a region where the nucleic acid sequence has recently been determined. To identify the ubiE gene, we evaluated the amino acid sequences encoded by open reading frames located in this region for the presence of sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. One open reading frame in this region (o251) was found to encode these motifs, and several lines of evidence that confirm the identity of the o251 product as UbiE are presented. The transformation of a strain harboring the ubiE401 mutation with o251 on an expression plasmid restored both the growth of this strain on succinate and its ability to synthesize both ubiquinone and menaquinone. Disruption of o251 in a wild-type parental strain produced a mutant with defects in growth on succinate and in both ubiquinone and menaquinone synthesis. DNA sequence analysis of the ubiE401 allele identified a missense mutation resulting in the amino acid substitution of Asp for Gly142. E. coli strains containing either the disruption or the point mutation in ubiE accumulated 2-octaprenyl-6-methoxy-1,4-benzoquinone and demethylmenaquinone as predominant intermediates. A search of the gene databases identified ubiE homologs in Saccharomyces cerevisiae, Caenorhabditis elegans, Leishmania donovani, Lactococcus lactis, and Bacillus subtilis. In B. subtilis the ubiE homolog is likely to be required for menaquinone biosynthesis and is located within the gerC gene cluster, known to be involved in spore germination and normal vegetative growth. The data presented identify the E. coli UbiE polypeptide and provide evidence that it is required for the C methylation reactions in both ubiquinone and menaquinone biosynthesis. << Less
J. Bacteriol. 179:1748-1754(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
Wissenbach U., Ternes D., Unden G.
The mutant strain AN70 (ubiE) of Escherichia coli which is known to lack ubiquinone (Young IG et al. 1971), was analyzed for menaquinone (MK) and demethylmenaquinone (DMK) contents. In contrast to the wild-type, strain AN70 contained only DMK, but no MK. The mutant strain was able to grow with fum ... >> More
The mutant strain AN70 (ubiE) of Escherichia coli which is known to lack ubiquinone (Young IG et al. 1971), was analyzed for menaquinone (MK) and demethylmenaquinone (DMK) contents. In contrast to the wild-type, strain AN70 contained only DMK, but no MK. The mutant strain was able to grow with fumarate, trimethylamine N-oxide (TMAO) and dimethylsulfoxide (DMSO), but not with nitrate as electron acceptor. The membranes catalyzed anaerobic respiration with fumarate and TMAO at 69 and 74% of wild-type rates. DMSO respiration was reduced to 38% of wild-type activities and nitrate respiration was missing (less than or equal to 8% of wild-type), although the respective enzymes were present in wild-type rates. The results complement earlier findings which demonstrated a role for DMK only in TMAO respiration (Wissenbach et al. 1990). It is concluded, that DMK (in addition to MK) can serve as a redox mediator in fumarate, TMAO and to some extent in DMSO respiration, but not in nitrate respiration. In strain AN70 (ubiE) the lack of ubiquinone (Q) is due to a defect in a specific methylation step of Q biosynthesis. Synthesis of MK from DMK appears to depend on the same gene (ubiE). << Less
Arch Microbiol 158:68-73(1992) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.