Reaction participants Show >> << Hide
- Name help_outline β-L-galactose 1-phosphate Identifier CHEBI:75522 Charge -2 Formula C6H11O9P InChIKeyhelp_outline HXXFSFRBOHSIMQ-SXUWKVJYSA-L SMILEShelp_outline OC[C@@H]1O[C@H](OP([O-])([O-])=O)[C@@H](O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-galactose Identifier CHEBI:37619 (Beilstein: 1423216; CAS: 15572-79-9) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-DHVFOXMCSA-N SMILEShelp_outline OC[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26349 | RHEA:26350 | RHEA:26351 | RHEA:26352 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants.
Torabinejad J., Donahue J.L., Gunesekera B.N., Allen-Daniels M.J., Gillaspy G.E.
Myoinositol synthesis and catabolism are crucial in many multiceullar eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol mo ... >> More
Myoinositol synthesis and catabolism are crucial in many multiceullar eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol monophosphatase (IMP) is a major enzyme required for the synthesis of myoinositol and the breakdown of myoinositol (1,4,5)trisphosphate, a potent second messenger involved in many biological activities. It has been shown that the VTC4 enzyme from kiwifruit (Actinidia deliciosa) has similarity to IMP and can hydrolyze l-galactose 1-phosphate (l-Gal 1-P), suggesting that this enzyme may be bifunctional and linked with two potential pathways of plant ascorbate synthesis. We describe here the kinetic comparison of the Arabidopsis (Arabidopsis thaliana) recombinant VTC4 with d-myoinositol 3-phosphate (d-Ins 3-P) and l-Gal 1-P. Purified VTC4 has only a small difference in the V(max)/K(m) for l-Gal 1-P as compared with d-Ins 3-P and can utilize other related substrates. Inhibition by either Ca(2+) or Li(+), known to disrupt cell signaling, was the same with both l-Gal 1-P and d-Ins 3-P. To determine whether the VTC4 gene impacts myoinositol synthesis in Arabidopsis, we isolated T-DNA knockout lines of VTC4 that exhibit small perturbations in abscisic acid, salt, and cold responses. Analysis of metabolite levels in vtc4 mutants showed that less myoinositol and ascorbate accumulate in these mutants. Therefore, VTC4 is a bifunctional enzyme that impacts both myoinositol and ascorbate synthesis pathways. << Less
Plant Physiol. 150:951-961(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase.
Petersen L.N., Marineo S., Mandala S., Davids F., Sewell B.T., Ingle R.A.
Histidine (His) plays a critical role in plant growth and development, both as one of the standard amino acids in proteins, and as a metal-binding ligand. While genes encoding seven of the eight enzymes in the pathway of His biosynthesis have been characterized from a number of plant species, the ... >> More
Histidine (His) plays a critical role in plant growth and development, both as one of the standard amino acids in proteins, and as a metal-binding ligand. While genes encoding seven of the eight enzymes in the pathway of His biosynthesis have been characterized from a number of plant species, the identity of the enzyme catalyzing the dephosphorylation of histidinol-phosphate to histidinol has remained elusive. Recently, members of a novel family of histidinol-phosphate phosphatase proteins, displaying significant sequence similarity to known myoinositol monophosphatases (IMPs) have been identified from several Actinobacteria. Here we demonstrate that a member of the IMP family from Arabidopsis (Arabidopsis thaliana), myoinositol monophosphatase-like2 (IMPL2; encoded by At4g39120), has histidinol-phosphate phosphatase activity. Heterologous expression of IMPL2, but not the related IMPL1 protein, was sufficient to rescue the His auxotrophy of a Streptomyces coelicolor hisN mutant. Homozygous null impl2 Arabidopsis mutants displayed embryonic lethality, which could be rescued by supplying plants heterozygous for null impl2 alleles with His. In common with the previously characterized HISN genes from Arabidopsis, IMPL2 was expressed in all plant tissues and throughout development, and an IMPL2:green fluorescent protein fusion protein was targeted to the plastid, where His biosynthesis occurs in plants. Our data demonstrate that IMPL2 is the HISN7 gene product, and suggest a lack of genetic redundancy at this metabolic step in Arabidopsis, which is characteristic of the His biosynthetic pathway. << Less
Plant Physiol. 152:1186-1196(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis.
Laing W.A., Bulley S., Wright M., Cooney J., Jensen D., Barraclough D., MacRae E.
Ascorbate is a critical compound in plants and animals. Humans are unable to synthesize ascorbate, and their main source of this essential vitamin are plants. However, the pathway of synthesis in plants is yet to be established, and several unknown enzymes are only postulated to exist. We describe ... >> More
Ascorbate is a critical compound in plants and animals. Humans are unable to synthesize ascorbate, and their main source of this essential vitamin are plants. However, the pathway of synthesis in plants is yet to be established, and several unknown enzymes are only postulated to exist. We describe a specific L-galactose-1-phosphate (L-gal-1-P) phosphatase that we partially purified from young kiwifruit (Actinidia deliciosa) berries. The enzyme had a native molecular mass of approximately 65 kDa, was completely dependent on Mg2+ for activity and was very specific in its ability to hydrolyze L-gal-1-P. The activity had a pH optimum of 7.0, a K(-M(L-gal-1-P) of 20-40 microM and a Ka(Mg2+) of 0.2 mM. The activity was inhibited by Mg2+ at concentrations >2 mM. The enzyme from Arabidopsis thaliana shoots showed similar properties to the kiwifruit enzyme. The Arabidopsis thaliana enzyme preparation was digested with trypsin, and proteins present were identified by using liquid chromatography-MS. One of 24 proteins present in our preparation was an Arabidopsis thaliana protein, At3g02870, annotated myo-inositol-1-phosphate phosphatase in GenBank, that matched the characteristics of the purified l-gal-1-phosphate phosphatase. We then expressed a kiwifruit homologue of this gene in Escherichia coli and found that it showed 14-fold higher maximum velocity for l-gal-1-P than myo-inositol-1-P. The expressed enzyme showed very similar properties to the enzyme purified from kiwifruit and Arabidopsis, except that its KM(L-gal-1-P) and Ka(Mg2+) were higher in the expressed enzyme. The data are discussed in terms of the pathway to ascorbate biosynthesis in plants. << Less
Proc. Natl. Acad. Sci. U.S.A. 101:16976-16981(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme.
Conklin P.L., Gatzek S., Wheeler G.L., Dowdle J., Raymond M.J., Rolinski S., Isupov M., Littlechild J.A., Smirnoff N.
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo r ... >> More
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for L-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted L-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within a beta-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, L-Gal-1-P phosphatase activity in vtc4-1 was approximately 50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-(3)H]Man into L-galactosyl residues suggesting that the mutation increases the availability of GDP-L-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in L-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed L-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that L-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis. << Less