Reaction participants Show >> << Hide
- Name help_outline 1,4-dihydroxy-2-naphthoyl-CoA Identifier CHEBI:58897 Charge -4 Formula C32H38N7O19P3S InChIKeyhelp_outline PYTINLGPKDJURZ-HSJNEKGZSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)c1cc(O)c2ccccc2c1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,4-dihydroxy-2-naphthoate Identifier CHEBI:11173 Charge -1 Formula C11H7O4 InChIKeyhelp_outline VOJUXHHACRXLTD-UHFFFAOYSA-M SMILEShelp_outline Oc1cc(C([O-])=O)c(O)c2ccccc12 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26309 | RHEA:26310 | RHEA:26311 | RHEA:26312 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA.
Widhalm J.R., Ducluzeau A.-L., Buller N.E., Elowsky C.G., Olsen L.J., Basset G.J.C.
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate ... >> More
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order. << Less
-
A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1.
Widhalm J.R., van Oostende C., Furt F., Basset G.J.C.
Phylloquinone (vitamin K(1)) is a bipartite molecule that consists of a naphthoquinone ring attached to a phytyl side chain. The coupling of these 2 moieties depends on the hydrolysis of the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA), which forms the naphthalenoid backbone. It is not known ... >> More
Phylloquinone (vitamin K(1)) is a bipartite molecule that consists of a naphthoquinone ring attached to a phytyl side chain. The coupling of these 2 moieties depends on the hydrolysis of the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA), which forms the naphthalenoid backbone. It is not known whether such a hydrolysis is enzymatic or chemical. In this study, comparative genomic analyses identified orthologous genes of unknown function that in most species of cyanobacteria cluster with predicted phylloquinone biosynthetic genes. The encoded approximately 16-kDa proteins display homology with some Hotdog domain-containing CoA thioesterases that are involved in the catabolism of 4-hydroxybenzoyl-CoA and gentisyl-CoA (2,5-dihydroxybenzoyl-CoA) in certain soil-dwelling bacteria. The Synechocystis ortholog, encoded by gene slr0204, was expressed as a recombinant protein and was found to form DHNA as reaction product. Unlike its homologs in the Hotdog domain family, Slr0204 showed strict substrate specificity. The Synechocystis slr0204 knockout was devoid of DHNA-CoA thioesterease activity and accumulated DHNA-CoA. As a result, knockout cells contained 13-fold less phylloquinone than their wild-type counterparts and displayed the typical photosensitivity to high light associated to phylloquinone deficiency in cyanobacteria. << Less
Proc. Natl. Acad. Sci. U.S.A. 106:5599-5603(2009) [PubMed] [EuropePMC]